170 resultados para lending electronic materials
Resumo:
The infrared spectra of monothiodiacetamide (MTDA, CHaCONHCSCH3) and its N-deuterated compound in solution, solid state and at low temperature are measured. Normal coordinate analysis for the planar vibrations of MTDAd o and -dl have been performed for the two most probable cis-trans-CONHCSor -CSNHCO-conformers using a simple Urey-Bradley force function. The conformation of MTDA derived from the vibrational spectra is supported by the all valence CNDO/2 molecular orbital method. The vibrational assignments and the electronic structure of MTDA are also given.
Resumo:
The crystal structure of 1,3-di benzyl -2 - (4,4-dimet hyl- 2,5- bist hioxocyclo hexylidene) imidazolidine (2) shows a twist of 80.8(5)' about the inter-ring bond, which has a length of 1.482(6) A. The near orthogonality of the donor and acceptor parts of this formal push-pull ethylene makes the structure approach that of a zwitterion, as evidenced by bond lengths indicating strong electron delocalization. The acceptor part approaches a vinylogous dithioate structure, the donor part an amidinium system. The U.V. spectrum shows an n + R and a R + R transition, at 51 1 and 41 7.5 nm, respectively; according to CNDO/S calculations these are located entirely in the [S-C-C-C-SI- part. Two bands at shorter wavelength are ascribed to transitions from combinations of the lone-pair orbitals on the sulphur atoms to a n* orbital in the [N-C-N] + part; this is facilitated by the near perpendicularity of the two parts of the molecule.
Resumo:
Photoacoustic spectroscopy has been employed to study the electronic spectra of a variety of solids. The systems studied include powders of intensely coloured dyes, amorphous chalcogenides and oxide gels besides polycrystalline samples of several oxide materials. Surface sensitivity of the technique has been examined by study of dye adsorption on oxide surfaces and determination of surface areas of active oxides. Acidic and basic sites on catalyst surfaces have also been estimated by this technique.
Resumo:
Structural stability of small sized nonstoichiometric CdS nano clusters between zincblende and wurtzite structures has been investigated using first-principles density functional calculations. Our study shows that the relative stability of these two structures depends sensitively on whether the surface is S-terminated or Cd-terminated. The associated band gap also exhibits non-monotonic behavior as a function of cluster size. Our findings may shed light on contradictory reports of experimentally observed structures of CdS nano clusters found in the literature.
Resumo:
The complexes of thiophene 2-thiocarboxamide (TTCA) with some metal chlorides and bromides [M = Ni(II), Zn(II), Cd(II), Hg(II) and Cu(I)] are described. Elemental analyses, magnetic susceptibilities and conductance studies, electronic, IR, proton and 13C magnetic resonance spectra are reported. The results suggest exclusive coordination of TTCA through the thiocarbonyl sulfur. The influence of the thiophene ring on the donor properties of the thioamide are discussed.
Resumo:
This paper presents finite element analysis of laminated anisotropic beams of bimodulus materials. The finite element has 16 d.o.f. and uses the displacement field in terms of first order Hermite interpolation polynomials. As the neutral axis position may change from point to point along the length of the beam, an iterative procedure is employed to determine the location of zero strain points along the length. Using this element some problems of laminated beams of bimodulus materials are solved for concentrated loads/moments perpendicular and parallel to the layering planes as well as combined loads.
Resumo:
Compton profile data are used to investigate the ground state wavefunction of graphite. The results of two new $\gamma$-ray measurements are reported and compared with the results of earlier $\gamma$-ray and electron scattering measurements. A tight-binding calculation has been carried out and the results of earlier calculations based on a molecular model and a pseudo-potential wavefunction are considered. The analysis, in terms of the reciprocal form factor, shows that none of the calculations gives an adequate description of the data in the basal plane although the pseudo-potential calculation describes the anisotropy in the plane reasonably well. In the basal plane the zero-crossing theorem appears to be violated and this problem must be resolved before more accurate models can be derived. In the c-axis direction the molecular model and the tight binding calculation give better agreement with the experimental data than does the pseudopotential calculation.
Resumo:
Electronic and magnetic properties of Ln1�xSrxCoO3 (Ln = Pr, Nd, Sm, Eu, and Gd) systems show that above a critical value of x, the d electrons become itinerant while the materials become ferromagnetic at low temperatures. The ferromagnetic component increases with increase in x and decrease in temperature. The Curie temperature increases with x and decreases with decrease in the size of the rare-earth ion. Incorporation of Ba2+ in LaCoO3 favors itinerant electron ferromagnetism relative to Sr2+ while Ca2+ is less favorable than Sr2+.
Resumo:
The potential energy curve of the He2+2 system dissociating into two He+ ions is examined in terms of the electronic force exerted on each nucleus as a function of the internuclear separation. The results are compared with the process of bond-formation in H2 from the separated atoms.
Resumo:
Electronic, magnetic, or structural inhomogeneities ranging in size from nanoscopic to mesoscopic scales seem endemic and are possibly generic to colossal magnetoresistance manganites and other transition metal oxides. They are hence of great current interest and understanding them is of fundamental importance. We show here that an extension, to include long-range Coulomb interactions, of a quantum two-fluid l-b model proposed recently for manganites [Phys. Rev. Lett. 92, 157203 (2004)] leads to an excellent description of such inhomogeneities. In the l-b model two very different kinds of electronic states, one localized and polaronic (l) and the other extended or broad band (b) coexist. For model parameters appropriate to manganites and even within a simple dynamical mean-field theory (DMFT) framework, it describes many of the unusual phenomena seen in manganites, including colossal magnetoresistance (CMR), qualitatively and quantitatively. However, in the absence of long-ranged Coulomb interaction, a system described by such a model would actually phase separate, into macroscopic regions of l and b electrons, respectively. As we show in this paper, in the presence of Coulomb interactions, the macroscopic phase separation gets suppressed and instead nanometer scale regions of polarons interspersed with band electron puddles appear, constituting a kind of quantum Coulomb glass. We characterize the size scales and distribution of the inhomogeneity using computer simulations. For realistic values of the long-range Coulomb interaction parameter V-0, our results for the thresholds for occupancy of the b states are in agreement with, and hence support, the earlier approach mentioned above based on a configuration averaged DMFT treatment which neglects V-0; but the present work has features that cannot be addressed in the DMFT framework. Our work points to an interplay of strong correlations, long-range Coulomb interaction, and dopant ion disorder, all inevitably present in transition metal oxides as the origin of nanoscale inhomogeneities rather than disorder frustrated phase competition as is generally believed. As regards manganites, it argues against explanations for CMR based on disorder frustrated phase separation and for an intrinsic origin of CMR. Based on this, we argue that the observed micrometer (meso) scale inhomogeneities owe their existence to extrinsic causes, e.g., strain due to cracks and defects. We suggest possible experiments to validate our speculation.
Resumo:
Relative band strengths of diatomic molecules for which the product of Franck-Condon factor and r-centroid is approximately equal to 1 for (0,0) band can be determined by a simple method which will be in good agreement with the smoothed array of experimental values.
Resumo:
Through-bond interactions in 1,4-dehydrobenzene preferentially stabilize the out-of-phase combination of the radical hydrids, The resultant splitting between the frontier orbitals is crucial in making Bergman cyclization a symmetry-allowed process. Orbital symmetry also inhibits the radical centers from forming a C-C bond, enabling the biradical to survive as a local minimum capable of intermolecular hydrogen abstraction, Both these factors, which are important in the design of DNA cleaving molecules, are confirmed through calculations on biradicals formed from diynes in which through-bond interactions stabilize the in-phase combination of hybrids at the radical centers.
Resumo:
Measurement of the chemical shifts ΔE of the K-absorption edge in both crystalline and amorphous states of several solids shows that ΔE is generally smaller in the amorphous state. More covalent solids appear to be associated with small values of ΔE.
Resumo:
We study the thermoelectric power under classically large magnetic field (TPM) in ultrathin films (UFs), quantum wires (QWs) of non-linear optical materials on the basis of a newly formulated electron dispersion law considering the anisotropies of the effective electron masses, the spin-orbit splitting constants and the presence of the crystal field splitting within the framework of k.p formalism. The results of quantum confined III-V compounds form the special cases of our generalized analysis. The TPM has also been studied for quantum confined II-VI, stressed materials, bismuth and carbon nanotubes (CNs) on the basis of respective dispersion relations. It is found taking quantum confined CdGeAs2, InAs, InSb, CdS, stressed n-InSb and Bi that the TPM increases with increasing film thickness and decreasing electron statistics exhibiting quantized nature for all types of quantum confinement. The TPM in CNs exhibits oscillatory dependence with increasing carrier concentration and the signature of the entirely different types of quantum systems are evident from the plots. Besides, under certain special conditions, all the results for all the materials gets simplified to the well-known expression of the TPM for non-degenerate materials having parabolic energy bands, leading to the compatibility test. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Boron- and nitrogen-doped graphenes are are prepared by the arc discharge between carbon electrodes or by the transformation of nanodiamond under appropriate atmospheres. Using a combination of experiment and theories based on first principles, systematic changes in the carrier-concentration and electronic structure of the doped graphenes are demonstrated. Stiffening of the G-band mode and intensification of the defect-related D-band in the Raman spectra are also observed.