200 resultados para kiln atmosphere


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combining the newly developed nonlinear model predictive static programming technique with null range direction concept, a novel explicit energy-insensitive guidance design method is presented in this paper for long range flight vehicles, which leads to a closed form solution of the necessary guidance command update. Owing to the closed form nature, it does not lead to computational difficulties and the proposed optimal guidance algorithm can be implemented online. The guidance law is verified in a solid motor propelled long range flight vehicle, for which coming up with an effective guidance law is more difficult as compared to a liquid engine propelled vehicle (mainly because of the absence of thrust cutoff facility). Assuming the starting point of the second stage to be a deterministic point beyond the atmosphere, the scheme guides the vehicle properly so that it completes the mission within a tight error bound. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in burnout time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land use and land cover changes affect the partitioning of latent and sensible heat, which impacts the broader climate system. Increased latent heat flux to the atmosphere has a local cooling influence known as `evaporative cooling', but this energy will be released back to the atmosphere wherever the water condenses. However, the extent to which local evaporative cooling provides a global cooling influence has not been well characterized. Here, we perform a highly idealized set of climate model simulations aimed at understanding the effects that changes in the balance between surface sensible and latent heating have on the global climate system. We find that globally adding a uniform 1 W m(-2) source of latent heat flux along with a uniform 1 W m(-2) sink of sensible heat leads to a decrease in global mean surface air temperature of 0.54 +/- 0.04 K. This occurs largely as a consequence of planetary albedo increases associated with an increase in low elevation cloudiness caused by increased evaporation. Thus, our model results indicate that, on average, when latent heating replaces sensible heating, global, and not merely local, surface temperatures decrease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Community Climate System Model (CCSM) is a Multiple Program Multiple Data (MPMD) parallel global climate model comprising atmosphere, ocean, land, ice and coupler components. The simulations have a time-step of the order of tens of minutes and are typically performed for periods of the order of centuries. These climate simulations are highly computationally intensive and can take several days to weeks to complete on most of today’s multi-processor systems. ExecutingCCSM on grids could potentially lead to a significant reduction in simulation times due to the increase in number of processors. However, in order to obtain performance gains on grids, several challenges have to be met. In this work,we describe our load balancing efforts in CCSM to make it suitable for grid enabling.We also identify the various challenges in executing CCSM on grids. Since CCSM is an MPI application, we also describe our current work on building a MPI implementation for grids to grid-enable CCSM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influences of the springtime northern Indian biomass burning are shown for the first time over the central Himalayas by using three years (2007-2009) of surface and space based observations along with a radiative transfer model. Near-surface ozone, black carbon (BC), spectral aerosol optical depths (AODs) and the meteorological parameters are measured at a high altitude site Nainital (29.37 degrees N, 79.45 degrees E, 1958 m amsl) located in the central Himalayas. The satellite observations include the MODIS derived fire counts and AOD (0.55 mu m), and OMI derived tropospheric column NO(2), ultraviolet aerosol index and single scattering albedo. MODIS fire counts and BC observations are used to identify the fire-impacted periods (372 h during 2007-2009) and hence the induced enhancements in surface BC, AOD (0.5 mu m) and ozone are estimated to be 1802 ng m(-3) (similar to 145%), 0.3 (similar to 150%) and 19 ppbv (similar to 34%) respectively. Large enhancements (53-100%) are also seen in the satellite derived parameters over a 2 degrees x 2 degrees region around Nainital. The present analysis highlights the northern Indian biomass burning induced cooling at the surface (-27 W m(-2)) and top of the atmosphere (-8 W m(-2)) in the lesser polluted high altitude regions of the central Himalayas. This cooling leads to an additional atmospheric warming of 19 W m(-2) and increases the lower atmospheric heating rate by 0.8 K day(-1). These biomass burning induced changes over the central Himalayan atmosphere during spring may also lead to enhanced short-wave absorption above clouds and might have an impact on the monsoonal rainfall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concern over changes in global climate has increased in recent years with improvement in understanding of atmospheric dynamics and growth in evidence of climate link to long‐term variability in hydrologic records. Climate impact studies rely on climate change information at fine spatial resolution. Towards this, the past decade has witnessed significant progress in development of downscaling models to cascade the climate information provided by General Circulation Models (GCMs) at coarse spatial resolution to the scale relevant for hydrologic studies. While a plethora of downscaling models have been applied successfully to mid‐latitude regions, a few studies are available on tropical regions where the atmosphere is known to have more complex behavior. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling to interpret climate change signals provided by GCMs over tropical regions of India. Climate variables affecting spatio‐temporal variation of precipitation at each meteorological sub‐division of India are identified. Following this, cluster analysis is applied on climate data to identify the wet and dry seasons in each year. The data pertaining to climate variables and precipitation of each meteorological sub‐division is then used to develop SVM based downscaling model for each season. Subsequently, the SVM based downscaling model is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to assess the impact of climate change on hydrological inputs to the meteorological sub‐divisions. The results obtained from the SVM downscaling model are then analyzed to assess the impact of climate change on precipitation over India.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present investigation reports the preparation and microstructural characterization of ultrafine CsCl crystallites using combined cryogenic and room temperature (RT) mechanical milling. The milling has been performed in evacuated WC vials under high purity argon atmosphere. The low temperature milling has been utilized as an effective means of rapid fracturing of the CsCl crystallites. This was followed by RT milling for different time durations. The final crystallite size obtained is 10 +/- 6 nm for sample cryo-milled for 11 h and subsequently RT milled for 35 h. The experimental findings indicate the strong effect of duration of cryo-milling on the final size of the crystallites. The prolonged room temperature milling leads to increase of the crystallite size due to deformation-induced sintering. The results have been discussed in the light of currently available literature. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scanning tunneling microscopy was used to study the surface nanostructure of the epitaxial film Nd2/3Sr1/3MnO3 that shows giant magnetoresistance. The surface morphology of the film consists of a number of overlapping platelets of about 30–35 Å diameter that grow at an angle of 35°–45° to the surface normal. The peak to peak height of the platelets are multiples of the c‐axis lattice parameter of 7.85 Å showing that the growth of the platelets takes place by the layer by layer addition of one formula unit. The mean surface roughness is about 10 Å. In the range of a few microns the film exhibits no defects or dislocations. The film is unstable in ambient atmosphere and tends to get covered by an adsorbate layer. Tip‐surface interactions cause the adsorbate to be dislodged exposing the surface nanostructure. The degradation of the film in real time when imaged in air was recorded. The adsorbates increase the surface roughness of the film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous silicon carbide (a-Si(1-x)C(x)) films were deposited on silicon (100) and quartz substrates by pulsed DC reactive magnetron sputtering of silicon in methane (CH(4))-Argon (Ar) atmosphere. The influence of substrate temperature and target power on the composition, carbon bonding configuration, band gap, refractive index and hardness of a-SiC films has been investigated. Increase in substrate temperature results in slightly decreasing the carbon concentration in the films but favors silicon-carbon (Si-C) bonding. Also lower target powers were favorable towards Si-C bonding. X-ray photoelectron spectroscopy (XPS) results agree with the Fourier Transform Infrared (FTIR), UV-vis spectroscopy results. Increase in substrate temperature resulted in increased hardness of the thin films from 13 to 17 GPa and the corresponding bandgap varied from 2.1 to 1.8 eV. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar dynamo models based on differential rotation inferred from helioseismology tend to produce rather strong magnetic activity at high solar latitudes, in contrast to the observed fact that sunspots appear at low latitudes. We show that a meridional circulation penetrating below the tachocline can solve this problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systematic observations of light detection and ranging (LIDAR) to detect elevated aerosol layer were carried out at Manora Peak (29.4 degrees N, 79.5 degrees E, similar to 1960 m a.s.l), Nainital, in the Central Himalayas during January-May 2008. In spite of being a remote, high-altitude site, an elevated aerosol layer is observed quite frequently in the altitude range of 2460-4460 m a.s.l with a width of similar to 2 km during the observation period. We compare these profiles with the vertical profiles observed over Gadanki (13.5 degrees N, 79.2 degrees E, similar to 370 m a.s.l), a tropical station, where no such elevated aerosol layer was found. Further, there is a steady increase in aerosol optical depth (AOD) from January (winter) to May (summer) from 0.043 to 0.742, respectively, at Manora Peak, indicating aerosol loading in the atmosphere. Our observations show north-westerly winds indicating the convective lifting of aerosols from far-off regions followed by horizontal long-range transport. The presence of strongly absorbing and scattering aerosols in the elevated layer resulted in a relatively large diurnal mean aerosol surface radiative forcing efficiency (forcing per unit optical depth) of about -65 and -63 W m(-2) and the corresponding mean reduction in the observed net solar flux at the surface (cooling effect) is as high as -22 and -30 W m(-2). The reduction of radiation will heat the lower atmosphere by redistributing the radiation with heating rate of 1.13 and 1.31 K day(-1) for April and May 2008, respectively, in the lower atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian region. I present a review of the current state of knowledge of aerosol chemistry in India and propose future directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study provides an electrodeposition based synthesis method for producing solid solution structured Ag-Ni nanoparticles. It was also observed that the room temperature stable solid solution configuration for the electrodeposited Ag-Ni nanoparticle was a kinetically frozen atomic arrangement and not a thermodynamically stable structure as upon annealing of the Ag-Ni nanoparticles in the ambient atmosphere the solid solution structure decomposed producing phases that were oxides of Ag and Ni. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.esl120008] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The simulation characteristics of the Asian-Australian monsoon are documented for the Community Climate System Model, version 4 (CCSM4). This is the first part of a two part series examining monsoon regimes in the global tropics in the CCSM4. Comparisons are made to an Atmospheric Model Intercomparison Project (AMIP) simulation of the atmospheric component in CCSM4 Community Atmosphere Model, version 4, (CAM4)] to deduce differences in the monsoon simulations run with observed sea surface temperatures (SSTs) and with ocean-atmosphere coupling. These simulations are also compared to a previous version of the model (CCSM3) to evaluate progress. In general, monsoon rainfall is too heavy in the uncoupled AMIP run with CAM4, and monsoon rainfall amounts are generally better simulated with ocean coupling in CCSM4. Most aspects of the Asian-Australian monsoon simulations are improved in CCSM4 compared to CCSM3. There is a reduction of the systematic error of rainfall over the tropical Indian Ocean for the South Asian monsoon, and well-simulated connections between SSTs in the Bay of Bengal and regional South Asian monsoon precipitation. The pattern of rainfall in the Australian monsoon is closer to observations in part because of contributions from the improvements of the Indonesian Throughflow and diapycnal diffusion in CCSM4. Intraseasonal variability of the Asian-Australian monsoon is much improved in CCSM4 compared to CCSM3 both in terms of eastward and northward propagation characteristics, though it is still somewhat weaker than observed. An improved simulation of El Nino in CCSM4 contributes to more realistic connections between the Asian-Australian monsoon and El Nino-Southern Oscillation (ENSO), though there is considerable decadal and century time scale variability of the strength of the monsoon-ENSO connection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By employing a thermal oxidation strategy, we have grown large area porous Cu2O from Cu foil. CuO nanorods are grown by heating Cu which were in turn heated in an argon atmosphere to obtain a porous Cu2O layer. The porous Cu2O layer is superhydrophobic and exhibits red luminescence. In contrast, Cu2O obtained by direct heating, is hydrophobic and exhibits yellow luminescence. Two more luminescence bands are observed in addition to red and yellow luminescence, corresponding to the recombination of free and bound excitons. Over all, the porous Cu2O obtained from Cu via CuO nanorods, can serve as a superhydrophobic luminescence/phosphor material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presented is a new method for making composition graded metal-ceramic composites using reactive inter-diffusion between a metal and a complex ceramic. Composition variation in both metal and ceramic phases with distance along the direction of diffusion is achieved. The design criteria for developing such composites are discussed. The system should exhibit extensive solid solubility in both metallic and ceramic phases, a defined gradation in the stabilities of the oxides, and mobility of electrons or holes in the oxide solid solution. The complex ceramic used for making the composite should be polycrystalline with sufficient porosity to accommodate the volume expansion caused by alloy precipitation. An inert atmosphere to prevent oxidation and high processing temperature to facilitate diffusive transport are required. The process is illustrated using the reaction couples Fe-NiTiO3, Fe-(Mg,Co)TiO3 and Fe-(Ni,Co)TiO3.