468 resultados para interactive dynamics
Resumo:
We study the dynamical properties of the homogeneous shear flow of inelastic dumbbells in two dimensions as a first step towards examining the effect of shape on the properties of flowing granular materials. The dumbbells are modelled as smooth fused disks characterized by the ratio of the distance between centres (L) and the disk diameter (D), with an aspect ratio (L/D) varying between 0 and 1 in our simulations. Area fractions studied are in the range 0.1-0.7, while coefficients of normal restitution (e(n)) from 0.99 to 0.7 are considered. The simulations use a modified form of the event-driven methodology for circular disks. The average orientation is characterized by an order parameter S, which varies between 0 (for a perfectly disordered fluid) and 1 (for a fluid with the axes of all dumbbells in the same direction). We investigate power-law fits of S as a function of (L D) and (1 - e(n)(2)) There is a gradual increase in ordering as the area fraction is increased, as the aspect ratio is increased or as the coefficient of restitution is decreased. The order parameter has a maximum value of about 0.5 for the highest area fraction and lowest coefficient of restitution considered here. The mean energy of the velocity fluctuations in the flow direction is higher than that in the gradient direction and the rotational energy, though the difference decreases as the area fraction increases, due to the efficient collisional transfer of energy between the three directions. The distributions of the translational and rotational velocities are Gaussian to a very good approximation. The pressure is found to be remarkably independent of the coefficient of restitution. The pressure and dissipation rate show relatively little variation when scaled by the collision frequency for all the area fractions studied here, indicating that the collision frequency determines the momentum transport and energy dissipation, even at the lowest area fractions studied here. The mean angular velocity of the particles is equal to half the vorticity at low area fractions, but the magnitude systematically decreases to less than half the vorticity as the area fraction is increased, even though the stress tensor is symmetric.
Resumo:
We present the results on the evolution of microscopic dynamics of hybrid nanoparticles and their binary mixtures as a function of temperature and wave vector. We find unexpectedly a nonmonotonic dependence of the structural relaxation time of the nanoparticles as a function of the morphology. In binary mixtures of two of the largest nanoparticles studied, we observe re-entrant vitrification as a function of the volume fraction of the smaller nanoparticle, which is unusual for such high diameter ratio. Possible explanation for the observed behavior is provided. (C) 2010 American Institute of Physics. doi:10.1063/1.3495480]
Resumo:
The dynamics of solvation of newly created charged species in dense dipolar liquids can proceed at a high speed with time constants often in the subpicosecond domain. The motion of the solvent molecules can be in the inertial limit at such short times. In this paper we present a microscopic study of the effects of inertial motion of solvent molecules on the solvation dynamics of a newly created ion in a model dipolar liquid. Interesting dynamical behavior emerges when the relative contribution of the translational modes in the wave-vector-dependent longitudinal relaxation time is significant. Especially, the theory predicts that the time correlation function of the solvation energy can become oscillatory in some limiting situations. In general, the dynamics becomes faster in the presence of the inertial contribution. We discuss the experimental situations where the inertial effects can be noticeable.
Resumo:
It is shown from an analytical theory that the solvation dynamics of a small ion can be controlled largely by the inertial response of the dipolar solvent when the liquid is in the underdamped limit. It is also shown that this inertial response arises primarily from the long wavelength (with wavevector k≃0) processes which have a collective excitation-like behaviour. The long time decay is dominated by the processes occurring at molecular lengthscales. The theoretical results are in good agreement with recent computer simulation results.
Resumo:
Valinomycin is an important ionophore which exhibits a high conformational flexibility. The study of various conformations adopted by this molecule together with the study of flexibility in a given conformation can throw light on the ion transport by the ionophore across the membrane. Molecular dynamics (MD) studies are ideal to characterize the flexibility in different parts of the molecule and can also give an idea of various conformations adopted by the molecule at a given temperature. Hence MD studies at 100K have been carried out on the minimized crystal structure of the molecule to scan the possible conformations in the neighbourhood of the well known 'bracelet' like structure of uncomplexed Valinomycin, Properties, like the flexibility, average values, r.m.s. fluctuations of the various intramolecular hydrogen bonds are discussed. Energy minimization has been carried out on selected MD simulated points to analyze the characteristics of the unique conformation adopted by this molecule at this temperature.
Resumo:
Molecular dynamics calculations on methane sorbed in NaY (Si/Al = 3.0) employing realistic methane-methane and methane-zeolite intermolecular potential functions at different temperatures (50, 150, 220, and 300 K) and concentrations (2, 4, 6, and 8 molecules/cage) are reported. The thermodynamic results are in agreement with the available experimental data. Guest-guest and guest-host radial distribution functions (rdfs), energy distribution functions, distribution of cage occupancy, center-of-cage-center-of-mass (coc-com) rdfs, velocity autocorrelation functions for com and angular motion and the Fourier transformed power spectra, and diffusion coefficients are presented as a function of temperature and concentration. At 50 K, methane is localized near the adsorption site. Site-site migration and essentially free rotational motion are observed at 150 K. Molecules preferentially occupy the region near the inner surface of the alpha-cage. The vibrational frequencies for the com of methane shift toward higher values with decreasing temperature and increasing adsorbate concentration. The observed frequencies for com motion are 36, 53, and 85 cm-1 and for rotational motion at 50 K, 95 and 150 cm-1 in agreement with neutron scattering data. The diffusion coefficients show a type I behavior as a function of loading in agreement with NMR measurements. Cage-to-cage diffusion is found to be always mediated by the surface.
Resumo:
We compute the entropy and transport properties of water in the hydration layer of dipalmitoylphosphatidylcholine bilayer by using a recently developed theoretical scheme two-phase thermodynamic model, termed as 2PT method; S.-T. Lin et al., J. Chem. Phys. 119, 11792 (2003)] based on the translational and rotational velocity autocorrelation functions and their power spectra. The weights of translational and rotational power spectra shift from higher to lower frequency as one goes from the bilayer interface to the bulk. Water molecules near the bilayer head groups have substantially lower entropy (48.36 J/mol/K) than water molecules in the intermediate region (51.36 J/mol/K), which have again lower entropy than the molecules (60.52 J/mol/K) in bulk. Thus, the entropic contribution to the free energy change (T Delta S) of transferring an interface water molecule to the bulk is 3.65 kJ/mol and of transferring intermediate water to the bulk is 2.75 kJ/mol at 300 K, which is to be compared with 6.03 kJ/mol for melting of ice at 273 K. The translational diffusion of water in the vicinity of the head groups is found to be in a subdiffusive regime and the rotational diffusion constant increases going away from the interface. This behavior is supported by the slower reorientational relaxation of the dipole vector and OH bond vector of interfacial water. The ratio of reorientational relaxation time for Legendre polynomials of order 1 and 2 is approximately 2 for interface, intermediate, and bulk water, indicating the presence of jump dynamics in these water molecules. (C) 2010 American Institute of Physics. doi:10.1063/1.3494115]
Resumo:
The enzymes of the family of tRNA synthetases perform their functions with high precision by synchronously recognizing the anticodon region and the aminoacylation region, which are separated by ?70 in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modeled the structure of the complex consisting of Escherichia coli methionyl-tRNA synthetase (MetRS), tRNA, and the activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross-correlations between the residues in MetRS have been evaluated. Furthermore, the network analysis on these simulated structures has been carried out to elucidate the paths of communication between the activation site and the anticodon recognition site. This study has provided the detailed paths of communication, which are consistent with experimental results. Similar studies also have been carried out on the complexes (MetRS + activated methonine) and (MetRS + tRNA) along with ligand-free native enzyme. A comparison of the paths derived from the four simulations clearly has shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The details of the method of our investigation and the biological implications of the results are presented in this article. The method developed here also could be used to investigate any protein system where the function takes place through long-distance communication.
Resumo:
Higher order LCL filters are essential in meeting the interconnection standard requirement for grid-connected voltage source converters. LCL filters offer better harmonic attenuation and better efficiency at a smaller size when compared to the traditional L filters. The focus of this paper is to analyze the LCL filter design procedure from the point of view of power loss and efficiency. The IEEE 1547-2008 specifications for high-frequency current ripple are used as a major constraint early in the design to ensure that all subsequent optimizations are still compliant with the standards. Power loss in each individual filter component is calculated on a per-phase basis. The total inductance per unit of the LCL filter is varied, and LCL parameter values which give the highest efficiency while simultaneously meeting the stringent standard requirements are identified. The power loss and harmonic output spectrum of the grid-connected LCL filter is experimentally verified, and measurements confirm the predicted trends.
Resumo:
Computational fluid dynamics has reached a stage where flow field in practical situation can be predicted to aid the design and to probe into the fundamental flow physics to understand and resolve the issues in fundamental fluid mechanics The study examines the computation of reacting flows After exploring the conservation equations for species and energy, the methods of closing the reaction rate terms in turbulent flow have been examined briefly Two cases of computation where combustion-flow interaction plays important role, have been discussed to illustrate the computational aspects and the physical insight that can be gained by the reacting flow computation
Resumo:
Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G(7)) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of similar to1.5 Angstrom from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400 K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.
Resumo:
Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the 06 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 A from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, 06 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures
Resumo:
The structures of a PbO.SiO2 glass and melt have been studied using molecular dynamics simulation employing Born-Mayer-Huggins pair potentials. Various pair distribution functions are presented and discussed. Pb-Pb correlations persist in the melt, in agreement with experimental observations. The calculated and experimental radial distribution functions are compared.
Resumo:
Even research models of helicopter dynamics often lead to a large number of equations of motion with periodic coefficients; and Floquet theory is a widely used mathematical tool for dynamic analysis. Presently, three approaches are used in generating the equations of motion. These are (1) general-purpose symbolic processors such as REDUCE and MACSYMA, (2) a special-purpose symbolic processor, DEHIM (Dynamic Equations for Helicopter Interpretive Models), and (3) completely numerical approaches. In this paper, comparative aspects of the first two purely algebraic approaches are studied by applying REDUCE and DEHIM to the same set of problems. These problems range from a linear model with one degree of freedom to a mildly non-linear multi-bladed rotor model with several degrees of freedom. Further, computational issues in applying Floquet theory are also studied, which refer to (1) the equilibrium solution for periodic forced response together with the transition matrix for perturbations about that response and (2) a small number of eigenvalues and eigenvectors of the unsymmetric transition matrix. The study showed the following: (1) compared to REDUCE, DEHIM is far more portable and economical, but it is also less user-friendly, particularly during learning phases; (2) the problems of finding the periodic response and eigenvalues are well conditioned.
Resumo:
Time-dependent models of collisionless stellar systems with harmonic potentials allowing for an essentially exact analytic description have recently been described. These include oscillating spheres and spheroids. This paper extends the analysis to time-dependent elliptic discs. Although restricted to two space dimensions, the systems are richer in that their parameters form a 10-dimensional phase space (in contrast to six for the earlier models). Apart from total energy and angular momentum, two additional conserved quantities emerge naturally. These can be chosen as the areas of extremal sections of the ellipsoidal region of phase space occupied by the system (their product gives the conserved volume). The present paper describes the construction of these models. An application to a tidal encounter is given which allows one to go beyond the impulse approximation and demonstrates the effects of rotation of the perturbed system on energy and angular-momentum transfer. The angular-momentum transfer is shown to scale inversely as the cube of the encounter velocity for an initial configuration of the perturbed galaxy with zero quadrupole moment.