222 resultados para ink reduction software
Resumo:
Miniaturization of devices and the ensuing decrease in the threshold voltage has led to a substantial increase in the leakage component of the total processor energy consumption. Relatively simpler issue logic and the presence of a large number of function units in the VLIW and the clustered VLIW architectures attribute a large fraction of this leakage energy consumption in the functional units. However, functional units are not fully utilized in the VLIW architectures because of the inherent variations in the ILP of the programs. This underutilization is even more pronounced in the context of clustered VLIW architectures because of the contentions for the limited number of slow intercluster communication channels which lead to many short idle cycles.In the past, some architectural schemes have been proposed to obtain leakage energy bene .ts by aggressively exploiting the idleness of functional units. However, presence of many short idle cycles cause frequent transitions from the active mode to the sleep mode and vice-versa and adversely a ffects the energy benefits of a purely hardware based scheme. In this paper, we propose and evaluate a compiler instruction scheduling algorithm that assist such a hardware based scheme in the context of VLIW and clustered VLIW architectures. The proposed scheme exploits the scheduling slacks of instructions to orchestrate the functional unit mapping with the objective of reducing the number of transitions in functional units thereby keeping them off for a longer duration. The proposed compiler-assisted scheme obtains a further 12% reduction of energy consumption of functional units with negligible performance degradation over a hardware-only scheme for a VLIW architecture. The benefits are 15% and 17% in the context of a 2-clustered and a 4-clustered VLIW architecture respectively. Our test bed uses the Trimaran compiler infrastructure.
Resumo:
The effect of variation in the switching instant of the output switch of the pulser circuit used in energizing an NEMP simulator on the voltage fed to the simulator and hence the electric field within the working volume of the simulator has been studied. Depending upon the instant at which the output switch closes, the amplitude and the wave shape of the voltage that is fed to the illuminator varies. This wave shape of the output voltage from the pulser circuit determines the shape and characteristics of the electric field within the working volume of the simulator. To study the effect of variation in the switching instant on the vertical electric field within the working volume, the vertical electric field has been computed in time and frequency domains. For certain switching instants, the electric field shows a sharp reduction in its amplitude after the peak which is called the notch. The presence of notch results in the test object not getting illuminated with all the frequencies of interest. The notch has been successfully reduced by suitably modifying the pulser circuit.
Resumo:
Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate Is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 degrees C with Pt-CeO(2) catalyst and at 50 degrees C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.
Resumo:
Today 80 % of the content on the Web is in English, which is spoken by only 8% of the World population and 5% of Indian population. There is wealth of useful content in the various languages of the world other than English, which can be made available on the Internet. But, to date, for various reasons most of it is not yet available on the Internet. India itself has 18 officially recognized languages and scores of dialects. Although the medium of instruction for most of the higher education and research in India is English, substantial amount of literature by way of novels, textbooks, scholarly information are being generated in the other languages in the country. Many of the e-governance initiatives are in the respective state languages. In the past, support for different languages by the operating systems and the software packages were not very encouraging. However, with the advent of Unicode technology, operating systems and software packages are supporting almost all the major languages of the world that have scripts. In the work reported in this paper, we have explained the configuration changes that are needed for Eprints.org software to store multilingual content and to create a multilingual user interface.
Resumo:
In this present paper, the effects of non-isothermal rolling temperature and reduction in thickness followed by annealing on microstructure and mechanical properties of ZM21 magnesium alloy were investigated. The alloy rolled at four different temperatures 250 degrees C, 300 degrees C, 350 degrees C and 400 degrees C with reductions of 25%, 50% and 75%. Non-isothermal rolling resulted in grain refinement, introduction of shear bands and twins in the matrix alloy. Partial to full recrystallization was observed when the rolling temperature was above recrystallization temperature. Rolling and subsequent annealing resulted in strain-free equiaxed grains and complete disappearance of shear bands and twins. Maximum ultimate strength (345 MPa) with good ductility (14%) observed in the sample rolled at 250 degrees C with 75% reduction in thickness followed by short annealing. Recrystallization during warm/hot rolling was sluggish, but post-roll treatment gives distinct views about dynamic and static recrystallization. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The physical chemistry of "aluminothermic" reduction of calcium oxide in vacuum is analyzed. Basic thermodynamic data required for the analysis have been generated by a variety of experiments. These include activity measurements in liquid AI-Ca alloys and determination of the Gibbs energies of formation of calcium aluminates. These data have been correlated with phase relations in the Ca-AI-0 system at 1373 K. The various stages of reduction, the end products and the corresponding equilibrium partial pressures of calcium have been established from thermodynamic considerations. In principle, the recovery of calcium can be improved by reducing the pressure in the reactor. However,, the cost of a high vacuum system and the enhanced time for reduction needed to achieve higher yields makes such a practice uneconomic. Aluminum contamination of calcium also increases at low pressures. The best compromise is to carry the reduction up to the stage where 3CaO-Al,O, is formed as the product. This corresponds to an equilibrium calcium partial pressure of 31.3 Pa at 1373 K and 91.6 Pa at 1460 K. Calcium can be extracted at this pressure using mechanical pumps in approximately 8 to 15 hr, depending on the size and the fill ratio of the retort and porosity of the charge briquettes.
Resumo:
This paper describes the authors’ distributed parameter approach for derivation of closed-form expressions for the four-pole parameters of the perforated three-duct muffler components. In this method, three simultaneous second-order partial differential equations are first reduced to a set of six first-order ordinary differential equations. These equations are then uncoupled by means of a modal matrix. The resulting 6 × 6 matrix is reduced to the 2 × 2 transfer matrix using the relevant boundary conditions. This is combined with transfer matrices of other elements (upstream and downstream of this perforated element) to predict muffler performance like noise reduction, which is also measured. The correlation between experimental and theoretical values of noise reduction is shown to be satisfactory.
Resumo:
A large reduction in the leakage current behavior in (Ba, Sr)TiO3 (BST) thin films was observed by graded-layer donor doping. The graded doping was achieved by introducing La-doped BST layers in the grown BST films. The films showed a large decrease (about six orders of magnitude) in the leakage current in comparison to undoped films at an electric field of 100 kV/cm. The large decrease in leakage current was attributed to the formation of highly resistive layers, originating from compensating defect chemistry involved for La-doped films grown in oxidizing environment. Temperature-dependent leakage-current behavior was studied to investigate the conduction mechanism and explanations of the results were sought from Poole–Frenkel conduction mechanism.
Resumo:
Software transactional memory (STM) has been proposed as a promising programming paradigm for shared memory multi-threaded programs as an alternative to conventional lock based synchronization primitives. Typical STM implementations employ a conflict detection scheme, which works with uniform access granularity, tracking shared data accesses either at word/cache line or at object level. It is well known that a single fixed access tracking granularity cannot meet the conflicting goals of reducing false conflicts without impacting concurrency adversely. A fine grained granularity while improving concurrency can have an adverse impact on performance due to lock aliasing, lock validation overheads, and additional cache pressure. On the other hand, a coarse grained granularity can impact performance due to reduced concurrency. Thus, in general, a fixed or uniform granularity access tracking (UGAT) scheme is application-unaware and rarely matches the access patterns of individual application or parts of an application, leading to sub-optimal performance for different parts of the application(s). In order to mitigate the disadvantages associated with UGAT scheme, we propose a Variable Granularity Access Tracking (VGAT) scheme in this paper. We propose a compiler based approach wherein the compiler uses inter-procedural whole program static analysis to select the access tracking granularity for different shared data structures of the application based on the application's data access pattern. We describe our prototype VGAT scheme, using TL2 as our STM implementation. Our experimental results reveal that VGAT-STM scheme can improve the application performance of STAMP benchmarks from 1.87% to up to 21.2%.