407 resultados para high charge state
Resumo:
Chemical shifts of Mo K-absorption edge and Mo core level binding energies in Ax Mo6 Ch8 (Ch = S, Se, Te) Chevrel phases show clear evidence for charge transfer from the A element to the Mo6 cluster. The chemical shifts vary linearly with the intercluster Mo-Mo distance as well as the rhombohedral parameter.
Resumo:
LiNi1/3Mn1/3Co1/3O2, a high voltage and high-capacity cathode material for Li-ion batteries, has been synthesized by three different rapid synthetic methods. viz. nitrate-melt decomposition, combustion and sol-gel methods. The first two methods are ultra rapid and a time period as small as 15 min is sufficient to prepare nano-crystalline LiNi1/3Mn1/3Co1/3O2. The processing parameters in obtaining the best performing materials are optimized for each process and their electrochemical performance is evaluated in Li-ion cells. The combustion-derived LiNi1/3Mn1/3Co1/3O2 sample exhibits large extent of cation mixing (10%) while the other two methods yield LiNi1/3Mn1/3Co1/3O2 with cation mixing <5%. LiNi1/3Mn1/3Co1/3O2 prepared by nitrate-melt decomposition method exhibits superior performance as Li-ion battery cathode material.
Resumo:
The thermal decomposition of hydrazinium monoperchlorate (HP-1) in the molten state has been investigated using differential thermal analysis, thermogravimetric analysis, a constant volume manometric technique and mass-spectrometry. The stoichiometry of the reaction can be represented by the equation: 20 N2H5C1O4 13 NH4C1O4 + 3.5 Cl2 + 2 O2 + 13 N2 + 0.5 N2O + 0.5 H2 + + 23.5 H2O The data seem to indicate that the mechanism, which involves an associated complex, remains unchanged from 140 to 190°. Consequently, impurities capable of forming associated complexes with the hydrazinium or the perchlorate ion desensitize the thermal decomposition of HP-1, the extent of desensitization being determined by the size, the charge and the concentration of the impurity.
Resumo:
We study the properties of walls of marginal stability for BPS decays in a class of N = 2 theories. These theories arise in N = 2 string compactifications obtained as freely acting orbifolds of N = 4 theories, such theories include the STU model and the FHSV model. The cross sections of these walls for a generic decay in the axion-dilaton plane reduce to lines or circles. From the continuity properties of walls of marginal stability we show that central charges of BPS states do not vanish in the interior of the moduli space. Given a charge vector of a BPS state corresponding to a large black hole in these theories, we show that all walls of marginal stability intersect at the same point in the lower half of the axion-dilaton plane. We isolate a class of decays whose walls of marginal stability always lie in a region bounded by walls formed by decays to small black holes. This enables us to isolate a region in moduli space for which no decays occur within this class. We then study entropy enigma decays for such models and show that for generic values of the moduli, that is when moduli are of order one compared to the charges, entropy enigma decays do not occur in these models.
Resumo:
Morphology and electrochemical performance of mixed crystallographic phase titania nanotubes for prospective application as anode in rechargeable lithium ion batteries are discussed. Hydrothermally grown nanotubes of titania (TiO2) and carbon-titania (C-TiO2) comprise a mixture of both anatase and TiO2 (B) crystallographic phases. The first cycle capacity (at Current rate = 10 mAg(-1)) for bare TiO2 nanotubes was 355 mAhg(-1) (approximately 1.06 Li), which is higher than both the theoretical capacity (335 mAhg(-1)) and the reported values for pure anatase and TiO2 (B) nanotubes. Higher capacity is attributed to it combination of the presence of mixed crystallographic phases of titania and trivial size effects. The surface area of bare TiO2 nanotubes was very high at 340 m(2) g(-1). C-TiO2 nanotubes showed a slightly lower first-cycle specific capacity of 307 mAhg(-1), but the irreversible capacity loss in the first cycle decreased by half compared to bare TiO2 nanotubes. The C-TiO2 nanotubes also showed a better rate capability, that is, higher capacities compared to bare TiO2 nanotubes in the Current range 0.1-2 Ag-1. Enhanced rate capability in the case of C-TiO2 is attributed to the efficient percolation of electrons as well its to the decrease in the anatase phase.
Resumo:
The folding and stability of maltose binding protein (MBP) have been investigated as a function of pH and temperature by intrinsic tryptophan fluorescence, far- and near-UV circular dichroism, and high-sensitivity differential scanning calorimetric measurements. MBP is a monomeric, two-domain protein containing 370 amino acids. The protein is stable in the pH range of 4-10.5 at 25 degrees C. The protein exhibits reversible, two-state, thermal and guanidine hydrochloride-mediated denaturation at neutral pH. The thermostability of MBP is maximal at pH 6, with a Tm of 64.9 degrees C and a deltaHm of 259.7 kcal mol(-1). The linear dependence of deltaHm on Tm was used to estimate a value of deltaCp of 7.9 kcal mol(-1) K(-1) or 21.3 cal (mol of residue)(-1) K(-1). These values are higher than the corresponding deltaCp's for most globular proteins studied to date. However, the extrapolated values of deltaH and deltaS (per mole of residue) at 110 degrees C are similar to those of other globular proteins. These data have been used to show that the temperature at which a protein undergoes cold denaturation depends primarily on the deltaCp (per mol of residue) and that this temperature increases with an increase in deltaCp. The predicted decrease in stability of MBP at low temperatures was experimentally confirmed by carrying out denaturant-mediated unfolding studies at neutral pH at 2 and 28 degrees C.
Resumo:
A probe, 9-(anthrylmethyl)trimethylammonium chloride, 1, was prepared. 1 binds to calf-thymus DNA or Escherichia coli genomic DNA with high affinity, as evidenced from the absorption titration. Strong hypochromism, spectral broadening and red-shifts in the absorption spectra were observed. Half-reciprocal plot constructed from this experiment gave binding constant of 5±0.5×104 M−1 in base molarity. We employed this anthryl probe-DNA complex for studying the effects of addition of various surfactant to DNA. Surfactants of different charge types and chain lengths were used in this study and the effects of surfactant addition to such probe-DNA complex were compared with that of small organic cations or salts. Addition of either salts or cationic surfactants led to structural changes in DNA and under these conditions, the probe from the DNA-bound complex appeared to get released. However, the cationic surfactants could induce such release of the probe from the probe-DNA complex at a much lower concentration than that of the small organic cations or salts. In contrast the anionic surfactants failed to promote any destabilization of such probe-DNA complexes. The effects of additives on the probe-DNA complexes were also examined by using a different technique (fluorescence spectroscopy) using a different probe ethidium bromide. The association complexes formed between the cationic surfactants and the plasmid DNA pTZ19R, were further examined under agarose gel electrophoresis and could not be visualized by ethidium bromide staining presumably due to cationic surfactant-induced condensation of DNA. Most of the DNA from such association complexes can be recovered by extraction of surfactants with phenol-chloroform. Inclusion of surfactants and other additives into the DNA generally enhanced the DNA melting temperatures by a few °C and at high [surfactant], the corresponding melting profiles got broadened.
Resumo:
Several metal complexes of three different functionalized salen derivatives have been synthesized. The salens differ in terms of the electrostatic character and the location of the charges. The interactions of such complexes with DNA were first investigated in detail by UV−vis absorption titrimetry. It appears that the DNA binding by most of these compounds is primarily due to a combination of electrostatic and other modes of interactions. The melting temperatures of DNA in the presence of various metal complexes were higher than that of the pure DNA. The presence of additional charge on the central metal ion core in the complex, however, alters the nature of binding. Bis-cationic salen complexes containing central Ni(II) or Mn(III) were found to induce DNA strand scission, especially in the presence of co-oxidant as revealed by plasmid DNA cleavage assay and also on the basis of the autoradiogram obtained from their respective high-resolution sequencing gels. Modest base selectivity was observed in the DNA cleavage reactions. Comparisons of the linearized and supercoiled forms of DNA in the metal complex-mediated cleavage reactions reveal that the supercoiled forms are more susceptible to DNA scission. Under suitable conditions, the DNA cleavage reactions can be induced either by preformed metal complexes or by in situ complexation of the ligand in the presence of the appropriate metal ion. Also revealed was the fact that the analogous complexes containing Cu(II) or Cr(III) did not effect any DNA strand scission under comparable conditions. Salens with pendant negative charges on either side of the precursor salicylaldehyde or ethylenediamine fragments did not bind with DNA. Similarly, metallosalen complexes with net anionic character also failed to induce any DNA modification activities.
Resumo:
We present some results on multicarrier analysis of magnetotransport data, Both synthetic as well as data from narrow gap Hg0.8Cd0.2Te samples are used to demonstrate applicability of various algorithms vs. nonlinear least square fitting, Quantitative Mobility Spectrum Analysis (QMSA) and Maximum Entropy Mobility Spectrum Analysis (MEMSA). Comments are made from our experience oil these algorithms, and, on the inversion procedure from experimental R/sigma-B to S-mu specifically with least square fitting as an example. Amongst the conclusions drawn are: (i) Experimentally measured resistivity (R-xx, R-xy) should also be used instead of just the inverted conductivity (sigma(xx), sigma(xy)) to fit data to semiclassical expressions for better fits especially at higher B. (ii) High magnetic field is necessary to extract low mobility carrier parameters. (iii) Provided the error in data is not large, better estimates to carrier parameters of remaining carrier species can be obtained at any stage by subtracting highest mobility carrier contribution to sigma from the experimental data and fitting with the remaining carriers. (iv)Even in presence of high electric field, an approximate multicarrier expression can be used to guess the carrier mobilities and their variations before solving the full Boltzmann equation.
Resumo:
Electron paramagnetic resonance (EPR) and magnetic properties of nanowires of Pr0.57Ca0.41Ba0.02MnO3 (PCBMO) are studied and compared with those of the bulk material. PCBMO nanowires with diameter of 80-90 nm and length of similar to 3.5 mu m were synthesized by a low reaction temperature hydrothermal method and the bulk sample was prepared following a solid-state reaction route. The samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The bulk PCBMO manganite exhibits charge order at 230 K along with a ferromagnetic transition at 110 K. However, superconducting quantum interference device measurements on the PCBMO nanowires show a complete `melting' of charge ordering and a ferromagnetic transition at 115 K. This result is confirmed by the EPR intensity behavior as well. However, the EPR line width, which is reflective of the spin dynamics, shows a shallow minimum for nanowires at the temperature corresponding to the charge-ordering transition, i.e., 230 K. We interpret this result as an indication of the presence of charge-ordering fluctuations in the nanowires even though the static charge order is absent, thus heralding the occurrence of charge order in the bulk sample.
Resumo:
Composite of anatase titania (TiO2) nanospheres and carbon grown and self-assembled into micron-sized mesoporous spheres via a solvothermal synthesis route are discussed here in the context of rechargeable lithium-ion battery. The morphology and carbon content and hence the electrochemical performance are observed to be significantly influenced by the synthesis parameters. Synthesis conditions resulting in a mesoporous arrangement of an optimized amount carbon and TiO2 exhibited the best lithium battery performance. The first discharge cycle capacity of carbon-titania mesoporous spheres (solvothermal reaction at 150 degrees C at 6 h, calcination at 500 degrees C under air, BET surface area 80 m(2)g(-1)) was 334 mAhg(-1) (approximately 1 Li) at current rate of 0.066 Ag-1. High storage capacity and good cyclability is attributed to the nanostructuring of TiO2 (mesoporosity) as well as due to formation of a percolation network of carbon around the TiO2 nanoparticles. The micron-sized mesoporous spheres of carbon-titania composite nanoparticles also show good rate cyclability in the range (0.066-6.67) Ag-1.
Resumo:
We set up Wigner distributions for N-state quantum systems following a Dirac-inspired approach. In contrast to much of the work in this study, requiring a 2N x 2N phase space, particularly when N is even, our approach is uniformly based on an N x N phase-space grid and thereby avoids the necessity of having to invoke a `quadrupled' phase space and hence the attendant redundance. Both N odd and even cases are analysed in detail and it is found that there are striking differences between the two. While the N odd case permits full implementation of the marginal property, the even case does so only in a restricted sense. This has the consequence that in the even case one is led to several equally good definitions of the Wigner distributions as opposed to the odd case where the choice turns out to be unique.
Resumo:
High-pressure Raman and mid-infrared spectroscopic studies were carried out on ZrP2O7 to 23.2 and 13 GPa respectively. In the pressure range 0.7-4.3 GPa the lattice mode at 248 cm(-1) disappears, new modes appear around 380 and 1111 cm(-1) and the strong symmetric stretching mode at 476 cm(-1) softens, possibly indicating a subtle phase transition. Above 8 GPa all the modes broaden, and all of the Raman modes disappear beyond 18 GPa. On decompression from the highest pressure, 23.2, to 0 GPa all of the modes reappear but with larger full width at half maximum. Lattice dynamics of the high temperature phase of ZrP2O7 were studied using first principles method and compared with experimental values. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Ruthenium dioxide is deposited on stainless steel (SS) substrate by galvanostatic oxidation of Ru3+. At high current densities employed for this purpose, there is oxidation of water to oxygen, which occurs in parallel with Ru3+ oxidation. The oxygen evolution consumes a major portion of the charge. The oxygen evolution generates a high porosity to RuO2 films, which is evident from scanning electron microscopy studies. RuO2 is identified by X-ray photoelectron spectroscopy. Cyclic voltammetry and galvanostatic charge–discharge cycling studies indicate that RuO2/SS electrodes possess good capacitance properties. Specific capacitance of 276 F g−1 is obtained at current densities as high as 20 mA cm−2 (13.33 A g−1). Porous nature of RuO2 facilitates passing of high currents during charge–discharge cycling. RuO2/SS electrodes are thus useful for high power supercapacitor applications.