159 resultados para explicit undervisning
Resumo:
Angiogenin is a protein belonging to the superfamily of RNase A. The RNase activity of this protein is essential for its angiogenic activity. Although members of the RNase A family carry out RNase activity, they differ markedly in their strength and specificity. In this paper, we address the problem of higher specificity of angiogenin towards cytosine against uracil in the first base binding position. We have carried out extensive nano-second level molecular dynamics(MD) computer simulations on the native bovine angiogenin and on the CMP and UMP complexes of this protein in aqueous medium with explicit molecular solvent. The structures thus generated were subjected to a rigorous free energy component analysis to arrive at a plausible molecular thermodynamic explanation for the substrate specificity of angiogenin.
Resumo:
We analyse the Roy equations for the lowest partial waves of elastic ππ scattering. In the first part of the paper, we review the mathematical properties of these equations as well as their phenomenological applications. In particular, the experimental situation concerning the contributions from intermediate energies and the evaluation of the driving terms are discussed in detail. We then demonstrate that the two S-wave scattering lengths a00 and a02 are the essential parameters in the low energy region: Once these are known, the available experimental information determines the behaviour near threshold to within remarkably small uncertainties. An explicit numerical representation for the energy dependence of the S- and P-waves is given and it is shown that the threshold parameters of the D- and F-waves are also fixed very sharply in terms of a00 and a20. In agreement with earlier work, which is reviewed in some detail, we find that the Roy equations admit physically acceptable solutions only within a band of the (a00,a02) plane. We show that the data on the reactions e+e−→ππ and τ→ππν reduce the width of this band quite significantly. Furthermore, we discuss the relevance of the decay K→ππeν in restricting the allowed range of a00, preparing the grounds for an analysis of the forthcoming precision data on this decay and on pionic atoms. We expect these to reduce the uncertainties in the two basic low energy parameters very substantially, so that a meaningful test of the chiral perturbation theory predictions will become possible.
Resumo:
We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data. (C) 2011 Optical Society of America
Resumo:
A many-body theory of paramagnetic Kondo insulators is described, focusing specifically on single-particle dynamics, scattering rates, dc transport and optical conductivities. This is achieved by development of a non-perturbative local moment approach to the symmetric periodic Anderson model within the framework of dynamical mean-field theory. Our natural focus is the strong-coupling, Kondo lattice regime, in particular the resultant 'universal' scaling behaviour in terms of the single, exponentially small low-energy scale characteristic of the problem. Dynamics/transport on all relevant (ω, T)-scales are considered, from the gapped/activated behaviour characteristic of the low-temperature insulator through to explicit connection to single-impurity physics at high ω and/or T; and for optical conductivities emphasis is given to the nature of the optical gap, the temperature scale responsible for its destruction and the consequent clear distinction between indirect and direct gap scales. Using scaling, explicit comparison is also made to experimental results for dc transport and optical conductivities of Ce3Bi4Pt3, SmB6 and YbB12. Good agreement is found, even quantitatively; and a mutually consistent picture of transport and optics results.
Resumo:
This paper proposes a derivative-free two-stage extended Kalman filter (2-EKF) especially suited for state and parameter identification of mechanical oscillators under Gaussian white noise. Two sources of modeling uncertainties are considered: (1) errors in linearization, and (2) an inadequate system model. The state vector is presently composed of the original dynamical/parameter states plus the so-called bias states accounting for the unmodeled dynamics. An extended Kalman estimation concept is applied within a framework predicated on explicit and derivative-free local linearizations (DLL) of nonlinear drift terms in the governing stochastic differential equations (SDEs). The original and bias states are estimated by two separate filters; the bias filter improves the estimates of the original states. Measurements are artificially generated by corrupting the numerical solutions of the SDEs with noise through an implicit form of a higher-order linearization. Numerical illustrations are provided for a few single- and multidegree-of-freedom nonlinear oscillators, demonstrating the remarkable promise that 2-EKF holds over its more conventional EKF-based counterparts. DOI: 10.1061/(ASCE)EM.1943-7889.0000255. (C) 2011 American Society of Civil Engineers.
Resumo:
Diversity embedded space time codes are high rate codes that are designed such that they have a high diversity code embedded within them. A recent work by Diggavi and Tse characterizes the performance limits that can be achieved by diversity embedded space-time codes in terms of the achievable Diversity Multiplexing Tradeoff (DMT). In particular, they have shown that the trade off is successively refinable for rayleigh fading channels with one degree of freedom using superposition coding and Successive Interference Cancellation (SIC). However, for Multiple-Input Multiple-Output (MIMO) channels, the questions of successive refinability remains open. We consider MIMO Channels under superposition coding and SIC. We derive an upper bound on the successive refinement characteristics of the DMT. We then construct explicit space time codes that achieve the derived upper bound. These codes, constructed from cyclic division algebras, have minimal delay. Our results establish that when the channel has more than one degree of freedom, the DMT is not successive refinable using superposition coding and SIC. The channels considered in this work can have arbitrary fading statistics.
Resumo:
We consider single-source single-sink (ss-ss) multi-hop relay networks, with slow-fading links and single-antenna half-duplex relay nodes. While two-hop cooperative relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this paper, we identify two families of networks that are multi-hop generalizations of the two-hop network: K-Parallel-Path (KPP)networks and layered networks.KPP networks, can be viewed as the union of K node-disjoint parallel relaying paths, each of length greater than one. KPP networks are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the DMT of these families of networks completely for K > 3. Layered networks are networks comprising of layers of relays with edges existing only between adjacent layers, with more than one relay in each layer. We prove that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for single-antenna fully-connected layered networks. This is shown to be equal to the optimal DMT if the number of relaying layers is less than 4.For multiple-antenna KPP and layered networks, we provide an achievable DMT, which is significantly better than known lower bounds for half duplex networks.For arbitrary multi-terminal wireless networks with multiple source-sink pairs, the maximum achievable diversity is shown to be equal to the min-cut between the corresponding source and the sink, irrespective of whether the network has half-duplex or full-duplex relays. For arbitrary ss-ss single-antenna directed acyclic networks with full-duplex relays, we prove that a linear tradeoff between maximum diversity and maximum multiplexing gain is achievable.Along the way, we derive the optimal DMT of a generalized parallel channel and derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. We also give alternative and often simpler proofs of several existing results and show that codes achieving full diversity on a MIMO Rayleigh fading channel achieve full diversity on arbitrary fading channels. All protocols in this paper are explicit and use only amplify-and-forward (AF) relaying. We also construct codes with short block-lengths based on cyclic division algebras that achieve the optimal DMT for all the proposed schemes.Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple AF protocols are often sufficient to attain the optimal DMT
Resumo:
An analog minimum-variance unbiased estimator(MVUE) over an asymmetric wireless sensor network is studied.Minimisation of variance is cast into a constrained non-convex optimisation problem. An explicit algorithm that solves the problem is provided. The solution is obtained by decomposing the original problem into a finite number of convex optimisation problems with explicit solutions. These solutions are then juxtaposed together by exploiting further structure in the objective function.
Resumo:
This article deals with the axial wave propagation properties of a coupled nanorod system with consideration of small scale effects. The nonlocal elasticity theory has been incorporated into classical rod/bar model to capture unique features of the coupled nanorods under the umbrella of continuum mechanics theory. Nonlocal rod model is developed for coupled nanorods. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behavior of nanorods from those of macroscopic rods. Explicit expressions are derived for wavenumber, cut-off frequency and escape frequency of nanorods. The analysis shows that the wave characteristics of nanorods are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial or longitudinal wave mode, where no wave propagation occurs. This is manifested in the spectrum cures as the region, where the wavenumber tends to infinite or wave speed tends to zero. The effect of the coupled spring stiffness is also capture in the present analysis. It has been also shown that the cut-off frequency increases as the stiffness of the coupled spring increases and also the coupled spring stiffness has no effect on escape frequency of the axial wave mode in the nanorod. This cut-off frequency is also independent of the nonlocal small scale parameter. The present study may bring in helpful insights while investigating multiple-nanorod-system-models for future nano-optomechanical systems applications. The results can also provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of coupled single-walled carbon nanotubes or coupled nanorods. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A energy-insensitive explicit guidance design is proposed in this paper by appending newlydeveloped nonlinear model predictive static programming technique with dynamic inversion, which render a closed form solution of the necessary guidance command update. The closed form nature of the proposed optimal guidance scheme suppressed the computational difficulties, and facilitate realtime solution. The guidance law is successfully verified in a solid motor propelled long range flight vehicle, for which developing an effective guidance law is more difficult as compared to a liquid engine propelled vehicle, mainly because of the absence of thrust cutoff facility. The scheme guides the vehicle appropriately so that it completes the mission within a tight error bound assuming that the starting point of the second stage to be a deterministic point beyond the atmosphere. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in the burnout time
Resumo:
Community-based natural resource management (CBNRM) is the joint management of natural resources by a community based on a community strategy, through a participatory mechanism involving all legitimate stakeholders. The approach is community-based in that the communities managing the resources have the legal rights, the local institutions and the economic incentives to take substantial responsibility for sustained use of these resources. This implies that the community plays an active role in the management of natural resources, not because it asserts sole ownership over them, but because it can claim participation in their management and benefits for practical and technical reasons1–4. This approach emerged as the dominant conservation concept in the late 1970s and early 1980s, of the disillusionment with the developmental state. Governments across South and South East Asia, Africa and Latin America have adopted and implemented CBNRM in various ways, viz. through sectoral programmes such as forestry, irrigation or wildlife management, multisectoral programmes such as watershed development and efforts towards political devolution. In India, the principle of decentralization through ‘gram swaraj’ was introduced by Mahatma Gandhi. The 73rd and 74th constitution amendments in 1992 gave impetus to the decentralized planning at panchayat levels through the creation of a statutory three-level local self-government structure5,6. The strength of this book is that it includes chapters by CBNRM advocates based on six seemingly innovative initiatives being implemented by nongovernmental organizations (NGOs) in ecologically vulnerable regions of South Asia: two in the Himalayas (watershed development programme in Lingmutechhu, Bhuthan and Thalisain tehsil, Paudi Grahwal District, Uttarakhand), three in semi-arid parts of western India (watershed development in Hivre Bazar, Maharashtra and Nathugadh village, Gujarat and water-harvesting structures in Gopalapura, Rajasthan) and one in the flood-plains of the Brahmaputra–Jamuna (Char land, Galibanda and Jamalpur districts, Bangladesh). Watersheds in semi-arid regions fall in the low-rainfall region (500–700 mm) and suffer the vagaries of drought 2–3 years in every five-year cycle. In all these locations, the major occupation is agriculture, most of which is rainfed or dry. The other two cases (in Uttarakhand) fall in the Himalayan region (temperate/sub-temperate climate), which has witnessed extensive deforestation in the last century and is now considered as one of the most vulnerable locations in South Asia. Terraced agriculture is being practised in these locations for a long time. The last case (Gono Chetona) falls in the Brahmaputra–Jamuna charlands which are the most ecologically vulnerable regions in the sub-continent with constantly changing landscape. Agriculture and livestock rearing are the main occupations, and there is substantial seasonal emigration for wage labour by the adult males. River erosion and floods force the people to adopt a semi-migratory lifestyle. The book attempts to analyse the potential as well as limitations of NGOdriven CBNRM endeavours across agroclimatic regions of South Asia with emphasis on four intrinsically linked normative concerns, namely sustainability, livelihood enhancement, equity and demographic decentralization in chapters 2–7. Comparative analysis of these case studies done in chapter 8, highlights the issues that require further research while portraying the strengths and limits of NGO-driven CBNRM. In Hivre Bazar, the post-watershed intervention scenario is such that farmers often grow three crops in a year – kharif bajra, rabi jowar and summer vegetable crops. Productivity has increased in the dry lands due to improvement in soil moisture levels. The revival of johads in Gopalpura has led to the proliferation of wheat and increased productivity. In Lingmuteychhu, productivity gains have also arisen, but more due to the introduction of both local and high-yielding, new varieties as opposed to increased water availability. In the case of Gono Chetona, improvements have come due to diversification of agriculture; for example, the promotion of vegetable gardens. CBNRM interventions in most cases have also led to new avenues of employment and income generation. The synthesis shows that CBNRM efforts have made significant contributions to livelihood enhancement and only limited gains in terms of collective action for sustainable and equitable access to benefits and continuing resource use, and in terms of democratic decentralization, contrary to the objectives of the programme. Livelihood benefits include improvements in availability of livelihood support resources (fuelwood, fodder, drinking water), increased productivity (including diversification of cropping pattern) in agriculture and allied activities, and new sources of livelihood. However, NGO-driven CBNRM has not met its goal of providing ‘alternative’ forms of ‘development’ due to impediments of state policy, short-sighted vision of implementers and confrontation with the socio-ecological reality of the region, which almost always are that of fragmented communities (or communities in flux) with unequal dependence and access to land and other natural resources along with great gender imbalances. Appalling, however, is the general absence of recognition of the importance of and the will to explore practical ways to bring about equitable resource transfer or benefit-sharing and the consequent innovations in this respect that are evident in the pioneering community initiatives such as pani panchayat, etc. Pertaining to the gains on the ecological sustainability front, Hivre Bazar and Thalisain initiatives through active participation of villagers have made significant regeneration of the water table within the village, and mechanisms such as ban on number of bore wells, the regulation of cropping pattern, restrictions on felling of trees and free grazing to ensure that in the future, the groundwater is neither over-exploited nor its recharge capability impaired. Nevertheless, the longterm sustainability of the interventions in the case of Ghoga and Gopalpura initiatives as the focus has been mostly on regeneration of resources, and less on regulating the use of regenerated resources. Further, in Lingmuteychhu and Gono Chetona, the interventions are mainly household-based and the focus has been less explicit on ecological components. The studies demonstrate the livelihood benefits to all of the interventions and significant variation in achievements with reference to sustainability, equity and democratic decentralization depending on the level and extent of community participation apart from the vision of implementers, strategy (or nature of intervention shaped by the question of community formation), the centrality of community formation and also the State policy. Case studies show that the influence of State policy is multi-faceted and often contradictory in nature. This necessitates NGOs to engage with the State in a much more purposeful way than in an ‘autonomous space’. Thus the role of NGOs in CBNRM is complementary, wherein they provide innovative experiments that the State can learn. This helps in achieving the goals of CBNRM through democratic decentralization. The book addresses the vital issues related to natural resource management and interests of the community. Key topics discussed throughout the book are still at the centre of the current debate. This compilation consists of well-written chapters based on rigorous synthesis of CBNRM case studies, which will serve as good references for students, researchers and practitioners in the years to come.
Resumo:
Crossover motifs are integral components for designing DNA-based nanostructures and nanomechanical devices due to their enhanced rigidity compared to the normal B-DNA. Although the structural rigidity of the double helix B-DNA has been investigated extensively using both experimental and theoretical tools, to date there is no quantitative information about structural rigidity and the mechanical strength of parallel crossover DNA motifs. We have used fully atomistic molecular dynamics simulations in explicit solvent to get the force-extension curve of parallel DNA nanostructures to characterize their mechanical rigidity. In the presence of monovalent Na(+) ions, we find that the stretch modulus (gamma(1)) of the paranemic crossover and its topoisomer JX DNA structure is significantly higher (similar to 30%) compared to normal B-DNA of the same sequence and length. However, this is in contrast to the original expectation that these motifs are almost twice as rigid compared to the double-stranded B-DNA. When the DNA motif is surrounded by a solvent with Mg(2+) counterions, we find an enhanced rigidity compared to Na(+) environment due to the electrostatic screening effects arising from the divalent nature of Mg(2+) ions. To our knowledge, this is the first direct determination of the mechanical strength of these crossover motifs, which can be useful for the design of suitable DNA for DNA-based nanostructures and nanomechanical devices with improved structural rigidity.
Resumo:
Frequent accesses to the register file make it one of the major sources of energy consumption in ILP architectures. The large number of functional units connected to a large unified register file in VLIW architectures make power dissipation in the register file even worse because of the need for a large number of ports. High power dissipation in a relatively smaller area occupied by a register file leads to a high power density in the register file and makes it one of the prime hot-spots. This makes it highly susceptible to the possibility of a catastrophic heatstroke. This in turn impacts the performance and cost because of the need for periodic cool down and sophisticated packaging and cooling techniques respectively. Clustered VLIW architectures partition the register file among clusters of functional units and reduce the number of ports required thereby reducing the power dissipation. However, we observe that the aggregate accesses to register files in clustered VLIW architectures (and associated energy consumption) become very high compared to the centralized VLIW architectures and this can be attributed to a large number of explicit inter-cluster communications. Snooping based clustered VLIW architectures provide very limited but very fast way of inter-cluster communication by allowing some of the functional units to directly read some of the operands from the register file of some of the other clusters. In this paper, we propose instruction scheduling algorithms that exploit the limited snooping capability to reduce the register file energy consumption on an average by 12% and 18% and improve the overall performance by 5% and 11% for a 2-clustered and a 4-clustered machine respectively, over an earlier state-of-the-art clustered scheduling algorithm when evaluated in the context of snooping based clustered VLIW architectures.
Resumo:
This paper proposes a framework of designing for conceptual and early embodiment design that uses physical laws and effects explicitly as a central aspect for designing. This is especially important in domains that make explicit use of physical laws and effects in their design, such as novel sensors. The objectives of the paper are: (a) Develop a model, (b) Empirically evaluate the model and (c) Propose a framework. The model is developed by integrating the activity- and outcome-based elements. The model is validated empirically by analyzing protocols of design sessions to find instances of activities and outcomes. Based on the findings, a framework is proposed on how designing should be done. Elements of GEMS (Generate-Evaluate-Modify-Select) and SAPPhIRE (State change-Action-Part-Phenomenon-Input-oRgan-Effect) are used for developing the model.Empirical evaluation confirms that designing can be modeled with the activity and outcome elements. The paper concludes with the identification of areas that require support and future work.
Resumo:
Regenerating codes are a class of distributed storage codes that allow for efficient repair of failed nodes, as compared to traditional erasure codes. An [n, k, d] regenerating code permits the data to be recovered by connecting to any k of the n nodes in the network, while requiring that a failed node be repaired by connecting to any d nodes. The amount of data downloaded for repair is typically much smaller than the size of the source data. Previous constructions of exact-regenerating codes have been confined to the case n = d + 1. In this paper, we present optimal, explicit constructions of (a) Minimum Bandwidth Regenerating (MBR) codes for all values of [n, k, d] and (b) Minimum Storage Regenerating (MSR) codes for all [n, k, d >= 2k - 2], using a new product-matrix framework. The product-matrix framework is also shown to significantly simplify system operation. To the best of our knowledge, these are the first constructions of exact-regenerating codes that allow the number n of nodes in the network, to be chosen independent of the other parameters. The paper also contains a simpler description, in the product-matrix framework, of a previously constructed MSR code with [n = d + 1, k, d >= 2k - 1].