146 resultados para electronic properties
Resumo:
In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.
Resumo:
We investigate the electronic and thermal transport properties of bulk MX2 compounds (M = Zr, Hf and X = S, Se) by first-principles calculations and semi-classical Boltzmann transport theory. The band structure shows the confinement of heavy and light bands along the out of plane and in-plane directions, respectively. This results in high electrical conductivity (sigma) and large thermopower leading to a high power factor (S-2 sigma) for moderate n-type doping. The phonon dispersion demonstrates low frequency flat acoustical modes, which results in low group velocities (v(g)). Consequently, lowering the lattice thermal conductivity (kappa(latt)) below 2 W/m K. Low kappa(latt) combined with high power factor results in ZT > 0.8 for all the bulk MX2 compounds at high temperature of 1200 K. In particular, the ZT(max) of HfSe2 exceeds 1 at 1400 K. Our results show that Hf/Zr based dichalcogenides are very promising for high temperature thermoelectric application. (C) 2015 AIP Publishing LLC.
Resumo:
The effect of Radio Frequency (RF) power on the properties of magnetron sputtered Al doped ZnO thin films and the related sensor properties are investigated. A series of 2 wt% Al doped ZnO; Zn0.98Al0.02O (AZO) thin films prepared with magnetron sputtering at different RF powers, are examined. The structural results reveal a good adhesive nature of thin films with quartz substrates as well as increasing thickness of the films with increasing RF power. Besides, the increasing RF power is found to improve the crystallinity and grain growth as confirmed by X-ray diffraction. On the other hand, the optical transmittance is significantly influenced by the RF power, where the transparency values achieved are higher than 82% for all the AZO thin films and the estimated optical band gap energy is found to decrease with RF power due to an increase in the crystallite size as well as the film thickness. In addition, the defect induced luminescence at low temperature (77 K) and room temperature (300 K) was studied through photoluminescence spectroscopy, it is found that the defect density of electronic states of the Al3+ ion increases with an increase of RF power due to the increase in the thickness of the film and the crystallite size. The gas sensing behavior of AZO films was studied for NO2 at 350 degrees C. The AZO film shows a good response towards NO2 gas and also a good relationship between the response and the NO2 concentration, which is modeled using an empirical formula. The sensing mechanism of NO2 is discussed.
Resumo:
The effect of Radio Frequency (RF) power on the properties of magnetron sputtered Al doped ZnO thin films and the related sensor properties are investigated. A series of 2 wt% Al doped ZnO; Zn0.98Al0.02O (AZO) thin films prepared with magnetron sputtering at different RF powers, are examined. The structural results reveal a good adhesive nature of thin films with quartz substrates as well as increasing thickness of the films with increasing RF power. Besides, the increasing RF power is found to improve the crystallinity and grain growth as confirmed by X-ray diffraction. On the other hand, the optical transmittance is significantly influenced by the RF power, where the transparency values achieved are higher than 82% for all the AZO thin films and the estimated optical band gap energy is found to decrease with RF power due to an increase in the crystallite size as well as the film thickness. In addition, the defect induced luminescence at low temperature (77 K) and room temperature (300 K) was studied through photoluminescence spectroscopy, it is found that the defect density of electronic states of the Al3+ ion increases with an increase of RF power due to the increase in the thickness of the film and the crystallite size. The gas sensing behavior of AZO films was studied for NO2 at 350 degrees C. The AZO film shows a good response towards NO2 gas and also a good relationship between the response and the NO2 concentration, which is modeled using an empirical formula. The sensing mechanism of NO2 is discussed.
Resumo:
GdxZn1-xO (x = 0, 0.02, 0.04 and 0.06) nanostructures have been synthesized using sol-gel technique and characterized to understand their structural and magnetic properties. X-ray diffraction (XRD) results show that Gd (0, 2, 4 and 6 %)-doped ZnO nanostructures crystallized in the wurtzite structure having space group C3(v) (P6(3)mc). Photoluminescence and Raman studies of Gd-doped ZnO powder show the formation of singly ionized oxygen vacancies. X-ray absorption spectroscopy reveals that Gd replaces the Zn atoms in the host lattice and maintains the crystal symmetry with slight lattice distortion. Gd L-3-edge spectra reveal charge transfer between Zn and Gd dopant ions. O K-edge spectra also depict the charge transfer through the oxygen bridge (Gd-O-Zn). Weak magnetic ordering is observed in all Gd-doped ZnO samples.
Resumo:
Recently, much research has been focused on finding new thermoelectric materials. Cu-based quaternary chalcogenides that belong to A(2)BCD(4) (A = Cu; B = Zn, Cd; C = Sn, Ge; D = S, Se, Te) are wide band gap materials and one of the potential thermoelectric materials due to their complex crystal structures. In this study, In-doped quaternary compounds Cu2ZnGe1-xInxSe4 (x = 0, 0.025, 0.05, 0.075, 0.1) were prepared by a solid state synthesis method. Powder x-ray diffraction patterns of all the samples showed a tetragonal crystal structure (space group I-42m) of the main phase with a trace amount of impurity phases, which was further confirmed by Rietveld analysis. The elemental composition of all the samples showed a slight deviation from the nominal composition with the presence of secondary phases. All the transport properties were measured in the temperature range 373-673 K. The electrical resistivity of all the samples initially decreased up to similar to 470 K and then increased with increase in temperature upto 673 K, indicating the transition from semiconducting to metallic behavior. Positive Seebeck coefficients for all the samples revealed that holes are the majority carriers in the entire temperature range. The substitution of In3+ on Ge4+ introduces holes and results in the decrease of resistivity as well as the Seebeck coefficient, thereby leading to the optimization of the power factor. The lattice thermal conductivity of all the samples decreased with increasing temperature, indicating the presence of phonon-phonon scattering. As a result, the thermoelectric figure of merit (zT) of the doped sample showed an increase as compared to the undoped compound.
Resumo:
Recently, research in copper-based quaternary chalcogenide materials has been found to be interesting for the study of thermoelectric properties because of their low thermal conductivity due to complex crystal structures. In the present work, stoichiometric quaternary chalcogenide compounds Cu2CdSn1-xInxSe4(x = 0, 0.025, 0.05, 0.1) were prepared by solid state synthesis. The powder X-ray diffraction patterns of all the samples showed a tetragonal crystal structure with the space group I (4) over bar 2m of the main phase. In addition to this phase, a small amount of impurity phase CdSe was present in all the samples, as confirmed by Rietveld analysis. The elemental composition of all the samples characterized by an Electron Probe Micro Analyzer showed a slight deviation from the nominal composition. The transport properties were measured in the temperature range of 350 K-723 K. The positive Seebeck coefficient of all the compounds indicate that the majority carriers are holes. The Seebeck coefficient and electrical resistivity did not follow the trend in the expected manner with In doping, which could be influenced by the presence of the impurity phases. The total thermal conductivity of all the samples was dominated by the lattice thermal conductivity, while the electronic contribution was very small due to the low carrier contribution. A lattice thermal conductivity decrease with an increase of temperature indicates the dominance of phonon-phonon scattering at higher temperatures. The maximum figure of merit zT = 0.30 at 723 K was obtained for the compound Cu2CdSn0.9In0.1Se4. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
We report the localized charge carrier transport of two-phase composite Zn1-x Ni (x) O/NiO (0 a parts per thousand currency sign x a parts per thousand currency sign 1) using the temperature dependence of ac-resistivity rho (ac)(T) across the N,el temperature T (N) (= 523 K) of nickel oxide. Our results provide strong evidence to the variable range hopping of charge carriers between the localized states through a mechanism involving spin-dependent activation energies. The temperature variation of carrier hopping energy epsilon (h)(T) and nearest-neighbor exchange-coupling parameter J (ij)(T) evaluated from the small poleron model exhibits a well-defined anomaly across T (N). For all the composite systems, the average exchange-coupling parameter (J (ij))(AVG) nearly equals to 70 meV which is slightly greater than the 60-meV exciton binding energy of pure zinc oxide. The magnitudes of epsilon (h) (similar to 0.17 eV) and J (ij) (similar to 11 meV) of pure NiO synthesized under oxygen-rich conditions are consistent with the previously reported theoretical estimation based on Green's function analysis. A systematic correlation between the oxygen stoichiometry and, epsilon (h)(T) and J (ij)(T) is discussed.
Resumo:
Exploring future cathode materials for sodium-ion batteries, alluaudite class of Na2Fe2II(SO4)(3) has been recently unveiled as a 3.8 V positive insertion candidate (Barpanda et al. Nat. Commun. 2014, 5, 4358). It forms an Fe-based polyanionic compound delivering the highest Fe-redox potential along with excellent rate kinetics and reversibility. However, like all known SO4-based insertion materials, its synthesis is cumbersome that warrants careful processing avoiding any aqueous exposure. Here, an alternate low temperature ionothermal synthesis has been described to produce the alluaudite Na2+2xFe2-xII(SO4)(3). It marks the first demonstration of solvothermal synthesis of alluaudite Na2+2xM2-xII(SO4)(3) (M = 3d metals) family of cathodes. Unlike classical solid-state route, this solvothermal route favors sustainable synthesis of homogeneous nanostructured alluaudite products at only 300 degrees C, the lowest temperature value until date. The current work reports the synthetic aspects of pristine and modified ionothermal synthesis of Na2+2xFe2-xII(SO4)(3) having tunable size (300 nm similar to 5 mu m) and morphology. It shows antiferromagnetic ordering below 12 K. A reversible capacity in excess of 80 mAh/g was obtained with good rate kinetics and cycling stability over 50 cycles. Using a synergistic approach combining experimental and ab initio DFT analysis, the structural, magnetic, electronic, and electrochemical properties and the structural limitation to extract full capacity have been described.
Theoretical insights on the electro-thermal transport properties of monolayer MoS2 with line defects
Resumo:
Two dimensional (2D) materials demonstrate several novel electrical, mechanical, and thermal properties which are quite distinctive to those of their bulk form. Among many others, one important potential application of the 2D material is its use in the field of energy harvesting. Owing to that, here we present a detailed study on electrical as well as thermal transport of monolayer MoS2, in quasi ballistic regime. Besides the perfect monolayer in its pristine form, we also consider various line defects which have been experimentally observed in mechanically exfoliated MoS2 samples. For calculating various parameters related to the electrical transmission, we employ the non-equilibrium Green's function-density functional theory combination. However, to obtain the phonon transmission, we take help of the parametrized Stillinger-Weber potential which can accurately delineate the inter-atomic interactions for the monolayer MoS2. Due to the presence of line defects, we observed significant reductions in both the charge carrier and the phonon transmissions through a monolayer MoS2 flake. Moreover, we also report a comparative analysis showing the temperature dependency of the thermoelectric figure of merit values, as obtained for the perfect as well as the other defective 2D samples. (C) 2016 AIP Publishing LLC.
Resumo:
Electromagnetic shielding has become important for various electrical systems because of the electromagnetic pollution caused by the large scale use of electronic devices operating at different frequencies and power levels. Traditionally used metallic shields lack flexibility and hence may not be the right choice for certain applications. In such situations, filled polymer composites provide a good alternative for electromagnetic shielding applications. Being polymer based, they are easy to manufacture and can be molded into the required geometry and shape. In this study, the shielding properties of multiwalled carbon nanotubes and carbon nanofibers filled silicone rubber are studied. The conductivity and the shielding effectiveness of the composites were measured at different filler loadings. Both the fillers are able to make the base polymer conducting even at very low filler loadings. The conductivity and the shielding effectiveness improved when the filler loading was above the percolation threshold.