143 resultados para electrochemical promotion
Resumo:
Recently, LiVP2O7 has been investigated as a possible high-voltage substitute for Li2FeP2O7. However, its Na-equivalent, NaVP2O7, as an economic replacement for Li2FeP2O7 has not yet been well understood. Here, for the first time, we report the feasibility of NaVP2O7 as a 3.4 V cathode material for Na-ion batteries. Having a theoretical capacity of 108 mA h g(-1), it shows an initial discharge capacity of 38.4 mA h g(-1) at 1/20C (1C = 108 mA g(-1)) in the voltage range of 2.5-4.0 V. Our study suggests that part of the sodium ions in the lattice structure exist as structural stabilizers and bring lattice distortion upon desodiation. This study also shows that the title compound, NaVP2O7, suffers from high intrinsic internal resistance, which limits the phase transition kinetics between pristine NaVP2O7 and desodiated Na1-xVP2O7.
Resumo:
A MoS2-RGO composite and borocarbonitride (BC5N) have been used as electrodes to selectively detect dopamine and uric acid in the presence of ascorbic acid. Both the electrodes show excellent eletrocatalytic activity towards the detection of dopamine, the detection limits being 0.55 mu M and 2.1 mu M in the case of MoS2-RGO and BCN respectively. MoS2-RGO shows a linear range of current over the 1-110 mu M concentrations of dopamine, while BCN shows over the 2.3-20 mu M range. BCN also exhibits satisfactory performance in the oxidation of uric acid with a detection limit of 3.8 mu M and the linear range from 4 to 40 mu M. The MoS2-RGO has also been used to detect adenine as well.
Resumo:
The electrochemical properties of pure Sn and Sn-graphene composite coating have been determined and compared. Coatings were electrodeposited on mild steel substrates. Graphene was synthesized by the electrochemical exfoliation process using SO42- ion as the intercalating agent. Morphological and structural characterization results revealed a clear effect of graphene on altering the texture, grain size and morphology of the coating. Corrosion behavior was analyzed through potentiodynamic polarization and electrochemical impedance spectroscopic methods. A significant improvement in the corrosion resistance in terms of reduction in corrosion current and corrosion rate and increase in polarization resistance was noted in case of Sn coating containing graphene.
Resumo:
Here, we report the synthesis of TiO2/BiFeO3 nano-heterostnicture (NH) arrays by anchoring BiFeO3 (BFO) particles on on TiO2 nanotube surface and investigate their pseudocapacitive and photoelectrochemical properties considering their applications in green energy fields. The unique TiO2/BFO NHs have been demonstrated both as energy conversion and storage materials. The capacitive behavior of the NHs has been found to be significantly higher than that of the pristine TiO2 NTs, which is mainly due to the anchoring of redox active BFO nanoparticles. A specific capacitance of about 440 F g(-1) has been achieved for this NHs at a current density of 1.1 A g(-1) with similar to 80% capacity retention at a current density of 2.5 A g(-1). The NHs also exhibit high energy and power performance (energy density of 46.5 Wh kg(-1) and power density of 1.2 kW kg(-1) at a current density of 2.5 A g(-1)) with moderate cycling stability (92% capacity retention after 1200 cycles). Photoelectrochemical investigation reveals that the photocurrent density of the NHs is almost 480% higher than the corresponding dark current and it shows significantly improved photoswitching performance as compared to pure TiO2 nanotubes, which has been demonstrated based the interfacial type-II band alignment between TiO2 and BFO.
Resumo:
An in situ study of stress evolution and mechanical behavior of germanium as a lithium-ion battery electrode material is presented. Thin films of germanium are cycled in a half-cell configuration with lithium metal foil as counter/reference electrode, with 1M LiPF6 in ethylene carbonate, diethyl carbonate, dimethyl carbonate solution (1:1:1, wt%) as electrolyte. Real-time stress evolution in the germanium thin-film electrodes during electrochemical lithiation/delithiation is measured by monitoring the substrate curvature using the multi-beam optical sensing method. Upon lithiation a-Ge undergoes extensive plastic deformation, with a peak compressive stress reaching as high as -0.76 +/- 0.05 GPa (mean +/- standard deviation). The compressive stress decreases with lithium concentration reaching a value of approximately -0.3 GPa at the end of lithiation. Upon delithiation the stress quickly became tensile and follows a trend that mirrors the behavior on compressive side; the average peak tensile stress of the lithiated Ge samples was approximately 0.83 GPa. The peak tensile stress data along with the SEM analysis was used to estimate a lower bound fracture resistance of lithiated Ge, which is approximately 5.3 J/m(2). It was also observed that the lithiated Ge is rate sensitive, i.e., stress depends on how fast or slow the charging is carried out. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.
Resumo:
The inhibition effect of colchicine (CC) on mild steel (MS) corrosion in 1 M HCl solution has been investigated by electrochemical techniques such as electrochemical impedance spectroscopy, potentiodynamic polarization, chronoamperometry and also by the gravimetric method. Polarization studies showed that CC acts as mixed type corrosion inhibitor. The inhibitor adsorption process in the MS/CC/HCl system was studied at different temperatures (303-333 K). The adsorption of CC on MS surface is an exothermic process and obeys the Langmuir adsorption isotherm. Based on potential of zero charge values and quantum chemical parameters, the mechanism of adsorption has been proposed.
Resumo:
This study reports a multinuclei in situ (real-time) NMR spectroscopic characterization of the electrochemical reactions of a negative Cu3P electrode toward lithium. Taking advantage of the different nuclear spin characteristics, we have obtained real-time P-31 and Li-7 NMR data for a comprehensive understanding of the electrochemical mechanism during the discharge and charge processes of a lithium battery. The large NMR chemical shift span of P-31 facilitates the observation of the chemical evolutions of different lithiated and delithiated LixCu3-xP phases, whereas the quadrupolar line features in Li-7 enable identification of asymmetric Li sites. These combined NMR data offer an unambiguous identification of four distinct LixCu3-xP phases, Cu3P, Li0.2Cu2.8P, Li2CuP, and. Li3P, and the characterization of their involvement in the electrochemical reactions. The NMR data led us to propose a delithiation process involving the intercalation of metallic Cu-0 atomic aggregates into the Li2CuP structure to form a Cu-0-Li2-xCu1-xP phase. This process might be responsible for the poor capacity retention in Cu3P lithium batteries when cycled to a low voltage.
Resumo:
A composite of manganese oxide and reduced graphene oxide (rGO) is prepared in a single step electrochemical reduction process in a phosphate buffer solution for studying as an electrocatalyst for the oxygen evolution reaction (OER). The novel composite catalyst, namely, MnOx-Pi-rGO, is electrodeposited from a suspension of graphene oxide (GO) in a neutral phosphate buffer solution containing KMnO4. The manganese oxide incorporates phosphate ions and deposits on the rGO sheet, which in turn is formed on the substrate electrode by electrochemical reduction of GO in the suspension. The OER is studied with the MnOx-Pi-rGO catalyst in a neutral phosphate electrolyte by linear sweep voltammetry. The results indicate a positive influence of rGO in the catalyst. By varying the ratio of KMnO4 and GO in the deposition medium and performing linear sweep voltammetry for the OER, the optimum composition of the deposition medium is obtained as 20 mM KMnO4 + 6.5% GO in 0.1 M phosphate buffer solution of pH 7. Under identical conditions, the MnOx-Pi-rGO catalyst exhibits 6.2 mA cm(-2) OER current against 2.9 mA cm(-2) by MnOx-Pi catalyst at 2.05 V in neutral phosphate solution. The Tafel slopes measured for OER at MnOx-Pi and MnOx-Pi-rGO are similar in magnitude at about 0.180 V decade(-1). The high Tafel slopes are attributed to partial dissolution of the catalyst during oxygen evolution. The O-2 evolved at the catalyst is measured by the water displacement method and the positive role of rGO on catalytic activity of MnOx-Pi is demonstrated.