248 resultados para dynamic compliance
Resumo:
Size and strain rate effects are among several factors which play an important role in determining the response of nanostructures, such as their deformations, to the mechanical loadings. The mechanical deformations in nanostructure systems at finite temperatures are intrinsically dynamic processes. Most of the recent works in this context have been focused on nanowires [1, 2], but very little attention has been paid to such low dimensional nanostructures as quantum dots (QDs). In this contribution, molecular dynamics (MD) simulations with an embedded atom potential method(EAM) are carried out to analyse the size and strain rate effects in the silicon (Si) QDs, as an example. We consider various geometries of QDs such as spherical, cylindrical and cubic. We choose Si QDs as an example due to their major applications in solar cells and biosensing. The analysis has also been focused on the variation in the deformation mechanisms with the size and strain rate for Si QD embedded in a matrix of SiO2 [3] (other cases include SiN and SiC matrices).It is observed that the mechanical properties are the functions of the QD size, shape and strain rate as it is in the case for nanowires [2]. We also present the comparative study resulted from the application of different EAM potentials in particular, the Stillinger-Weber (SW) potential, the Tersoff potentials and the environment-dependent interatomic potential (EDIP) [1]. Finally, based on the stabilized structural properties we compute electronic bandstructures of our nanostructures using an envelope function approach and its finite element implementation.
Resumo:
This paper describes a dynamic voltage frequency control scheme for a 256 X 64 SRAM block for reducing the energy in active mode and stand-by mode. The DVFM control system monitors the external clock and changes the supply voltage and the body bias so as to achieve a significant reduction in energy. The behavioral model of the proposed DVFM control system algorithm is described and simulated in HDL using delay and energy parameters obtained through SPICE simulation. The frequency range dictated by an external controller is 100 MHz to I GHz. The supply voltage of the complete memory system is varied in steps of 50 mV over the range of 500 mV to IV. The threshold voltage range of operation is plusmn100 mV around the nominal value, achieving 83.4% energy reduction in the active mode and 86.7% in the stand-by mode. This paper also proposes a energy replica that is used in the energy monitor subsystem of the DVFM system.
Effects of phase inhomogeneity and boundary conditions on the dynamic response of SMA wire actuators
Resumo:
This paper reports the simulation results from the dynamic analysis of a Shape Memory Alloy (SMA) actuator. The emphasis is on understanding the dynamic behavior under various loading rates and boundary conditions, resulting in complex scenarios such as thermal and stress gradients. Also, due to the polycrystalline nature of SMA wires, presence of microstructural inhomogeneity is inevitable. Probing the effect of inhomogeneity on the dynamic behavior can facilitate the prediction of life and characteristics of SMA wire actuator under varieties of boundary and loading conditions. To study the effect of these factors, an initial boundary value problem of SMA wire is formulated. This is subsequently solved using finite element method. The dynamic response of the SMA wire actuator is analyzed under mechanical loading and results are reported. Effect of loading rate, micro-structural inhomogeneity and thermal boundary conditions on the dynamic response of SMA wire actuator is investigated and the simulation results are reported.
Resumo:
We consider the problem of maintaining information about the rank of a matrix $M$ under changes to its entries. For an $n \times n$ matrix $M$, we show an amortized upper bound of $O(n^{\omega-1})$ arithmetic operations per change for this problem, where $\omega < 2.376$ is the exponent for matrix multiplication, under the assumption that there is a {\em lookahead} of up to $\Theta(n)$ locations. That is, we know up to the next $\Theta(n)$ locations $(i_1,j_1),(i_2,j_2),\ldots,$ whose entries are going to change, in advance; however we do not know the new entries in these locations in advance. We get the new entries in these locations in a dynamic manner.
Resumo:
This paper describes some of the physical and numerical model tests of reinforced soil retaining walls subjected to dynamic excitation through uni-axial shaking tests. Models of retaining walls are constructed in a perspex box with geotextile reinforcement using the wrap around technique with dry sand backfill and instrumented with displacement sensors, accelerometers and soil pressure sensors. Numerical modelling of these shaking table tests is carried using FLAC. Numerical model is validated by comparing physical model results. Responses of wrap faced walls with different number of reinforcement layers are discussed from both the physical and numerical model tests. Results showed that the displacements are decreasing with the increase in number of reinforcement layers while acceleration amplifications are not affected significantly.
Resumo:
We report on the formation of a stable Body-Centered Heptahedral (BCH) crystalline nanobridge structure of diameter ~ 1nm under high strain rate tensile loading to a <100> Cu nanowire. Extensive Molecular Dynamics (MD) simulations are performed. Six different cross-sectional dimensions of Cu nanowires are analyzed, i.e. 0.3615 x 0.3615 nm2, 0.723 x 0.723 nm2, 1.0845 x 1.0845 nm2, 1.446 x 1.446 nm2, 1.8075 x 1.8075 nm2, and 2.169 x 2.169 nm2. The strain rates used in the present simulations are 1 x 109 s-1, 1 x 108 s-1, and 1 x 107 s-1. We have shown that the length of the nanobridge can be characterized by larger plastic strain. A large plastic deformation is an indication that the structure is highly stable. The BCH nanobridge structure also shows enhanced mechanical properties such as higher fracture toughness and higher failure strain. The effect of temperature, strain rate and size of the nanowire on the formation of BCH structure is also explained in details. We also show that the initial orientation of the nanowires play an important role on the formation of BCH crystalline structure. Results indicate that proper tailoring of temperature and strain rate during processing or in the device can lead to very long BCH nanobridge structure of Cu with enhanced mechanical properties, which may find potential application for nano-scale electronic circuits.
Resumo:
This paper is concerned with the dynamic analysis of flexible,non-linear multi-body beam systems. The focus is on problems where the strains within each elastic body (beam) remain small. Based on geometrically non-linear elasticity theory, the non-linear 3-D beam problem splits into either a linear or non-linear 2-D analysis of the beam cross-section and a non-linear 1-D analysis along the beam reference line. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction,results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis,the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here.The analysis methodology can be viewed as a 3-step procedure. First, the sectional properties of beams made of composite materials are determined either based on an asymptotic procedure that involves a 2-D finite element nonlinear analysis of the beam cross-section to capture trapeze effect or using strip-like beam analysis, starting from Classical Laminated Shell Theory (CLST). Second, the dynamic response of non-linear, flexible multi-body beam systems is simulated within the framework of energy-preserving and energy-decaying time integration schemes that provide unconditional stability for non-linear beam systems. Finally,local 3-D responses in the beams are recovered, based on the 1-D responses predicted in the second step. Numerical examples are presented and results from this analysis are compared with those available in the literature.
Resumo:
In the design of °ight control system modeling uncertainties in the form of param-eter variations is one of the major problems. It is even more critical for high performance aircrafts,since such aircrafts are purposefully designed unstable to enhance their performance (especially ma-neuverability). Hence the °ight control system needs to be quite e®ective in both assuring accurate tracking of pilot commands, while simultaneously assuring overall stability of the aircraft. In addi-tion, the control system must also be su±ciently robust to cater for possible parameter variations and inaccuracies . The primary aim of this paper is to carry out a robustness study of a dynamic inversion based nonlinear control design for a high performance aircraft, which has been developed recently [1].
Resumo:
A energy-insensitive explicit guidance design is proposed in this paper by appending newlydeveloped nonlinear model predictive static programming technique with dynamic inversion, which render a closed form solution of the necessary guidance command update. The closed form nature of the proposed optimal guidance scheme suppressed the computational difficulties, and facilitate realtime solution. The guidance law is successfully verified in a solid motor propelled long range flight vehicle, for which developing an effective guidance law is more difficult as compared to a liquid engine propelled vehicle, mainly because of the absence of thrust cutoff facility. The scheme guides the vehicle appropriately so that it completes the mission within a tight error bound assuming that the starting point of the second stage to be a deterministic point beyond the atmosphere. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in the burnout time
Resumo:
Earlier studies have exploited statistical multiplexing of flows in the core of the Internet to reduce the buffer requirement in routers. Reducing the memory requirement of routers is important as it enables an improvement in performance and at the same time a decrease in the cost. In this paper, we observe that the links in the core of the Internet are typically over-provisioned and this can be exploited to reduce the buffering requirement in routers. The small on-chip memory of a network processor (NP) can be effectively used to buffer packets during most regimes of traffic. We propose a dynamic buffering strategy which buffers packets in the receive and transmit buffers of a NP when the memory requirement is low. When the buffer requirement increases due to bursts in the traffic, memory is allocated to packets in the off-chip DRAM. This scheme effectively mitigates the DRAM access bottleneck, as only a part of the traffic is stored in the DRAM. We build a Petri net model and evaluate the proposed scheme with core Internet like traffic. At 77% link utilization, the dynamic buffering scheme has a drop rate of just 0.65%, whereas the traditional DRAM buffering has 4.64% packet drop rate. Even with a high link utilization of 90%, which rarely happens in the core, our dynamic buffering results in a packet drop rate of only 2.17%, while supporting a throughput of 7.39 Gbps. We study the proposed scheme under different conditions to understand the provisioning of processing threads and to determine the queue length at which packets must be buffered in the DRAM. We show that the proposed dynamic buffering strategy drastically reduces the buffering requirement while still maintaining low packet drop rates.
Resumo:
This paper reports an experimental investigation of low Weber number water drops impacting onto solid surfaces exhibiting anisotropic wetting. The wetting anisotropy is created by patterning the solid surfaces with unidirectional parallel grooves. Temporal measurements of impacting drop parameters such as drop base contact diameter, apparent contact angle of drop, and drop height at the center are obtained from high-speed video recordings of drop impacts. The study shows that the impact of low Weber number water drops on the grooved surface exhibits beating phenomenon in the temporal variations of the dynamic contact angle anisotropy and drop height at the center of the impacting drop. It is observed that the beating phenomenon of impacting drop parameters is caused by the frequency difference between the dynamic contact angle oscillations of impacting drop liquid oriented perpendicular and parallel to the direction of grooves on the grooved surface. The primary trigger for the phenomenon is the existence of non-axisymmetric drop flow on the grooved surface featuring pinned and free motions of drop liquid in the directions perpendicular and parallel to the grooves, respectively. The beat frequency is almost independent of the impact drop Weber number. Further experimental measurements with solid surfaces of different groove textures show that the grooved surface with larger wetting anisotropy may be expected to show a dominant beating phenomenon. The phenomenon is gradually damped out with time and is fully unrecognizable at higher drop impact Weber numbers. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The soft switching converters evolved through the resonant load, resonant switch, resonant transition and active clamp converters to eliminate switching losses in power converters. This paper briefly presents the operating principle of the new family of soft transition converters; the methodology of design of these converters is presented through an example. In the proposed family of converters, the switching transitions of both the main switch and auxiliary switch are lossless.When these converters are analysed in terms of the pole current and throw voltage, the defining equations of all converters belonging to this family become identical.Such a description allows one to define simple circuit oriented model for these converters. These circuit models help in evaluating the steady state and dynamic model of these converters. The standard dynamic performance functions of the converters are readily obtainable from this model. This paper presents these dynamic models and verifies the same through measurements on a prototype converter.