172 resultados para direct recombination (DR)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunability of electron recombination time and light to electricity conversion efficiency to superior values in semiconductor sensitized solar cells via optimized design of nanocrystal light sensitizer shape is discussed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saccharomyces cerevisiae RAD50, MRE11, and XRS2 genes are essential for telomere length maintenance, cell cycle checkpoint signaling, meiotic recombination, and DNA double-stranded break (DSB) repair via nonhomologous end joining and homologous recombination. The DSB repair pathways that draw upon Mre11-Rad50-Xrs2 subunits are complex, so their mechanistic features remain poorly understood. Moreover, the molecular basis of DSB end resection in yeast mre11-nuclease deficient mutants and Mre11 nuclease-independent activation of ATM in mammals remains unknown and adds a new dimension to many unanswered questions about the mechanism of DSB repair. Here, we demonstrate that S. cerevisiae Mre11 (ScMre11) exhibits higher binding affinity for single-over double-stranded DNA and intermediates of recombination and repair and catalyzes robust unwinding of substrates possessing a 3' single-stranded DNA overhang but not of 5' overhangs or blunt-ended DNA fragments. Additional evidence disclosed that ScMre11 nuclease activity is dispensable for its DNA binding and unwinding activity, thus uncovering the molecular basis underlying DSB end processing in mre11 nuclease deficient mutants. Significantly, Rad50, Xrs2, and Sae2 potentiate the DNA unwinding activity of Mre11, thus underscoring functional interaction among the components of DSB end repair machinery. Our results also show that ScMre11 by itself binds to DSB ends, then promotes end bridging of duplex DNA, and directly interacts with Sae2. We discuss the implications of these results in the context of an alternative mechanism for DSB end processing and the generation of single-stranded DNA for DNA repair and homologous recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the objective of investigating the direct conversion of inorganic carbonates such as CaCO3 to hydrocarbons, assisted by transition metal ions, we have carried out studies on CaCO3 in an intimate admixture with iron oxides (FeCaCO) with a wide range of Fe/Ca mole ratios (x), prepared by co-precipitation. The hydrogen reduction of FeCaCO at 673 K gives up to 23% yield of the hydrocarbons CH4, C2H4, C2H6 and C3H8, leaving solid iron residues in the form of iron metal, oxides and carbide particles. The yield of hydrocarbons increases with x and the conversion of hydrocarbons occurs through the formation of CO. While the total yield of hydrocarbons obtained by us is comparable to that in the Fischer-Tropsch synthesis, the selectivity for C-2-C-3 hydrocarbons reported here is noteworthy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microglia are the resident macrophage-like populations in the central nervous system (CNS). Microglia remain quiescent, unable to perform effector and antigen presentation (APC) functions until activated by injury or infection, and have been suggested to represent the first line of defence for the CNS. Previous studies demonstrated that microglia can be persistently infected by neurotropic mouse hepatitis virus (MHV) which causes meningoencephalitis, myelitis with subsequent axonal loss, and demyelination and serve as a virus-induced model of human neurological disease multiple sclerosis (MS). Current studies revealed that MHV infection is associated with the pronounced activation of microglia during acute inflammation, as evidenced by characteristic changes in cellular morphology and increased expression of microglia-specific proteins, Iba1 (ionized calcium-binding adaptor molecule 1), which is a macrophage/microglia-specific novel calcium-binding protein and involved in membrane ruffling and phagocytosis. During chronic inflammation (day 30 postinfection), microglia were still present within areas of demyelination. Experiments performed in ex vivo spinal cord slice culture and in vitro neonatal microglial culture confirmed direct microglial infection. Our results suggest that MHV can directly infect and activate microglia during acute inflammation, which in turn during chronic inflammation stage causes phagocytosis of myelin sheath leading to chronic inflammatory demyelination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In several chemical and space industries, small bubbles are desired for efficient interaction between the liquid and gas phases. In the present study, we show that non-uniform electric field with appropriate electrode configurations can reduce the volume of the bubbles forming at submerged needles by up to three orders of magnitude. We show that localized high electric stresses at the base of the bubbles result in slipping of the contact line on the inner surface of the needle and subsequent bubble formation occurs with contact line inside the needle. We also show that for bubble formation in the presence of highly non-uniform electric field, due to high detachment frequency, the bubbles go through multiple coalescences and thus increase the apparent volume of the detached bubbles. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the application of support vector clustering (SVC) for the direct identification of coherent synchronous generators in large interconnected multi-machine power systems. The clustering is based on coherency measure, which indicates the degree of coherency between any pair of generators. The proposed SVC algorithm processes the coherency measure matrix that is formulated using the generator rotor measurements to cluster the coherent generators. The proposed approach is demonstrated on IEEE 10 generator 39-bus system and an equivalent 35 generators, 246-bus system of practical Indian southern grid. The effect of number of data samples and fault locations are also examined for determining the accuracy of the proposed approach. An extended comparison with other clustering techniques is also included, to show the effectiveness of the proposed approach in grouping the data into coherent groups of generators. This effectiveness of the coherent clusters obtained with the proposed approach is compared in terms of a set of clustering validity indicators and in terms of statistical assessment that is based on the coherency degree of a generator pair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct current electrodeposition of Co-P alloy coatings were carried out using gluconate bath and they were characterized by employing techniques like XRD, FESEM, DSC and XPS. Broad XRD lines demonstrate the amorphous nature of Co-P coatings. Spherical and rough nodules are observed on the surface of coatings as seen from FESEM images. Three exothermic peaks around 290, 342 and 390 degrees C in DSC profiles of Co-P coatings could be attributed to the crystallization and formation of Co2P phase in the coatings. As-deposited coatings consist of Co metal and oxidized Co species as revealed by XPS studies. Bulk alloy P (P delta-) as well as oxidized P (P5+) are present on the surface of coatings. Concentrations of Co metal and P delta- increase with successive sputtering of the coating. Observed microhardness value is 1005 HK when Co-P coating obtained from 10 g L-1 NaH2PO2 is heated at 400 degrees C that is comparable with hard chromium coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report high aspect-ratio micromechanical structures made of SU-8 polymer, which is a negative photoresist. Mask-less direct writing with 405 nm laser is used to pattern spin-cast SU-8 films of thickness of more than 600 um. As compared with X-ray lithography, which helps pattern material to give aspect ratios of 1:50 or higher, laser writing is a less expensive and more accessible alternative. In this work, aspect ratios up to 1:30 were obtained on narrow pillars and cantilever structures. Deep vertical patterning was achieved in multiple exposures of the surface with varying dosages given at periodic intervals of sufficient duration. It was found that a time lag between successive exposures at the same location helps the material recover from the transient changes that occur during exposure to the laser. This gives vertical sidewalls to the resulting structures. The time-lags and dosages were determined by conducting several trials. The micromechanical structures obtained with laser writing are compared with those obtained with traditional UV lithography as well as e-beam lithography. Laser writing gives not only high aspect ratios but also narrow gaps whereas e-beam can only give narrow gaps over very small depths. Unlike traditional UV lithography, laser writing does not need a mask. Furthermore, there is no adjustment for varying the dosage in traditional UV lithography. A drawback of this method compared to UV lithography is that the writing time increases. Some test structures as well as a compliant microgripper are fabricated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a liquid organic precursor can be injected directly into molten magnesium to produce nanoscale ceramic dispersions within the melt. The castings made in this way possess good resistance to tensile deformation at 673 K (400 degrees C), confirming the non-coarsening nature of these dispersions. Direct liquid injection into molten metals is a significant step toward inserting different chemistries of liquid precursors to generate a variety of polymer-derived metal matrix composites. (C) The Minerals, Metals & Materials Society and ASM International 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ge2Sb2Te5 (GST) is well known for its phase change properties and applications in memory and data storage. Efforts are being made to improve its thermal stability and transition between amorphous and crystalline phases. Various elements are doped to GST to improve these properties. In this work, Se has been doped to GST to study its effect on phase change properties. Amorphous GST film crystallized in to rock salt (NaCl) type structure at 150 degrees C and then transformed to hexagonal structure at 250 degrees C. Interestingly, Se doped GST ((GST)(0.9)Se-0.1) film crystallized directly into hexagonal phase and the intermediate phase of NaCl is not observed. The crystallization temperature (T-c) of (GST)(0.9)Se-0.1 is around 200 degrees C, which is 50 degrees C higher than the T-c of GST. For (GST)(0.9)Se-0.1, the threshold switching occurs at about 4.5V which is higher than GST (3 V). Band gap (E-opt) values of as deposited films are calculated from Tauc plot which are 0.63 eV for GST and 0.66 eV for (GST)(0.9)Se-0.1. The E-opt decreases for the films annealed at higher temperatures. The increased T-c, E-opt, the contrast in resistance and the direct transition to hexagonal phase may improve the data readability and thermal stability in the Se doped GST film. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the universal conductance fluctuations (UCF) can be used as a direct probe to study the valley quantum states in disordered graphene. The UCF magnitude in graphene is suppressed by a factor of four at high carrier densities where the short-range disorder essentially breaks the valley degeneracy of the K and K' valleys, leading to a density dependent crossover of symmetry class from symplectic near the Dirac point to orthogonal at high densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spark plasma sintering (SPS) is a convenient and rapid means of producing dense ceramic compacts. However, the mechanisms responsible for rapid densification have not been identified satisfactorily, with different studies using an indirect approach yielding varied values for the densification parameters. This study involved SPS in high purity nanocrystalline alumina with temperatures ranging from 1173 to 1423K and stresses from 25 to 100MPa. A direct approach, with analyses at a constant density, revealed a stress exponent of similar to 1 and an inverse grain size dependence of similar to 3, consistent with Coble creep process. Whereas the direct approach gives a stress exponent of similar to 1, the indirect approach used previously gives stress exponents ranging from similar to 2.2 to 3.5 with the same data, thereby revealing potentially spurious values of the densification parameters from conventional indirect approaches to characterizing densification. The rapid densification during SPS is related to the finer grain sizes retained with the rapid heating rates and the imposed stress that enhances the driving force for densification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of heating by black carbon aerosols on Indian summer monsoon has remained inconclusive. Some investigators have predicted that black carbon aerosols reduce monsoon rainfall while others have argued that it will increase monsoon rainfall. These conclusions have been based on local influence of aerosols on the radiative fluxes. The impact of aerosol-like heating in one region on the rainfall in a remote region has not been examined in detail. Here, using an atmospheric general circulation model, it has been shown that remote influence of aerosol-like heating can be as important as local influence on Indian summer monsoon. Precipitation in northern Arabian Sea and north-west Indian region increased by 16% in June to July when aerosol-like heating were present globally. The corresponding increase in precipitation due to presence of aerosol-like heating only over South Asia (local impact) and East Asia (remote impact) were 28 and 13%, respectively. This enhancement in precipitation was due to destabilization of the atmosphere in pre-monsoon season that affected subsequent convection. Moreover, pre-monsoon heating of the lower troposphere changed the circulation substantially that enabled influx of more moisture over certain regions and reduced the moist static stability of the atmosphere. It has been shown that regional aerosol heating can have large impact on the phase of upper tropospheric Rossby wave in pre-monsoon season, which acts as a primary mechanism behind teleconnection and leads to the change in precipitation during monsoon season. These results demonstrate that changes in aerosol in one region can influence the precipitation in a remote region through changes in circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise control of supercoiling homeostasis is critical to DNA-dependent processes such as gene expression, replication, and damage response. Topoisomerases are central regulators of DNA supercoiling commonly thought to act independently in the recognition and modulation of chromosome superstructure; however, recent evidence has indicated that cells tightly regulate topoisomerase activity to support chromosome dynamics, transcriptional response, and replicative events. How topoisomerase control is executed and linked to the internal status of a cell is poorly understood. To investigate these connections, we determined the structure of Escherichia coil gyrase, a type HA topoisomerase bound to YacG, a recently identified chromosomally encoded inhibitor protein. Phylogenetic analyses indicate that YacG is frequently associated with coenzyme A (CoA) production enzymes, linking the protein to metabolism and stress. The structure, along with supporting solution studies, shows that YacG represses gyrase by sterically occluding the principal DNA-binding site of the enzyme. Unexpectedly, YacG acts by both engaging two spatially segregated regions associated with small-molecule inhibitor interactions (fluoroquinolone antibiotics and the newly reported antagonist GSK299423) and remodeling the gyrase holo enzyme into an inactive, ATP-trapped configuration. This study establishes a new mechanism for the protein-based control of topoisomerases, an approach that may be used to alter supercoiling levels for responding to changes in cellular state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the recent reports pertaining to novel optical properties of ultra-small quantum dots (QDs) (r <2 nm), this nanomaterial is of relevance to both technology and science. However it is well known that in these size regimes most chalocogenide QD dispersions are unstable. Since applications often require use of QD dispersions (e.g. for deployment on a substrate), stabilizing these ultra-small particles is of practical relevance. In this work we demonstrate a facile, green, solution approach for synthesis of stable, ultra-small ZnO QDs having radius less than 2 nm. The particle size is calculated using Brits' equation and confirmed by transmission electron micrographs. ZnO QDs reported remain stable for > 120 days in ethanol (at similar to 298-303 K). We report digestive ripening (DR) in TEA capped ZnO QDs; this occurs rapidly over a short duration of 5 min. To explain this observation we propose a suitable mechanism based on the Lee's theory, which correlates the tendency of DR with the observed zeta potentials of the dispersed medium. To the best of our knowledge this is the (i) first report on DR in oxide QDs, as well as the first direct experimental verification of Lee's theory, and (ii) most rapid DR reported so far. The facile nature of the method presented here makes ultra-small ZnO readily accessible for fundamental exploration and technologically relevant applications. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.