142 resultados para correction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A ray tracing based path length calculation is investigated for polarized light transport in a pixel space. Tomographic imaging using polarized light transport is promising for applications in optical projection tomography of small animal imaging and turbid media with low scattering. Polarized light transport through a medium can have complex effects due to interactions such as optical rotation of linearly polarized light, birefringence, diattenuation and interior refraction. Here we investigate the effects of refraction of polarized light in a non-scattering medium. This step is used to obtain the initial absorption estimate. This estimate can be used as prior in Monte Carlo (MC) program that simulates the transport of polarized light through a scattering medium to assist in faster convergence of the final estimate. The reflectance for p-polarized (parallel) and s-polarized (perpendicular) are different and hence there is a difference in the intensities that reach the detector end. The algorithm computes the length of the ray in each pixel along the refracted path and this is used to build the weight matrix. This weight matrix with corrected ray path length and the resultant intensity reaching the detector for each ray is used in the algebraic reconstruction (ART) method. The proposed method is tested with numerical phantoms for various noise levels. The refraction errors due to regions of different refractive index are discussed, the difference in intensities with polarization is considered. The improvements in reconstruction using the correction so applied is presented. This is achieved by tracking the path of the ray as well as the intensity of the ray as it traverses through the medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method to weakly correct the solutions of stochastically driven nonlinear dynamical systems, herein numerically approximated through the Eule-Maruyama (EM) time-marching map, is proposed. An essential feature of the method is a change of measures that aims at rendering the EM-approximated solution measurable with respect to the filtration generated by an appropriately defined error process. Using Ito's formula and adopting a Monte Carlo (MC) setup, it is shown that the correction term may be additively applied to the realizations of the numerically integrated trajectories. Numerical evidence, presently gathered via applications of the proposed method to a few nonlinear mechanical oscillators and a semi-discrete form of a 1-D Burger's equation, lends credence to the remarkably improved numerical accuracy of the corrected solutions even with relatively large time step sizes. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use analytic conformal bootstrap methods to determine the anomalous dimensions and OPE coefficients for large spin operators in general conformal field theories in four dimensions containing a scalar operator of conformal dimension Delta(phi). It is known that such theories will contain an in finite sequence of large spin operators with twists approaching 2 Delta(phi) + 2n for each integer n. By considering the case where such operators are separated by a twist gap from other operators at large spin, we analytically determine the n, Delta(phi) dependence of the anomalous dimensions. We find that for all n, the anomalous dimensions are negative for Delta(phi) satisfying the unitarity bound. We further compute the first subleading correction at large spin and show that it becomes universal for large twist. In the limit when n is large, we find exact agreement with the AdS/CFT prediction corresponding to the Eikonal limit of a 2-2 scattering with dominant graviton exchange.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we have demonstrated three unique regimes in the evaporation lifecycle of a pair of sessile droplets placed in variable proximity on a hydrophobic substrate. For small separation distance, the droplets undergo asymmetric spatiotemporal,evaporation leading to contact angle hysteresis and suppressed vaporization. The reduced evaporation has been attributed quantitatively to the existence of a constrained vapor-rich dome between the two droplets. However, a dynamic decrease in the droplet radius due to solvent removal marks a return to symmetry in terms of evaporation and contact angle. We have described the variation in evaporation flux using a universal correction factor. We have also demonstrated the existence of a critical separation distance beyond which the droplets in the, droplet pair do not affect each other. The results are crucial to a plethora of applications ranging from surface patterning to lab-on-a-chip devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we have demonstrated three unique regimes in the evaporation lifecycle of a pair of sessile droplets placed in variable proximity on a hydrophobic substrate. For small separation distance, the droplets undergo asymmetric spatiotemporal,evaporation leading to contact angle hysteresis and suppressed vaporization. The reduced evaporation has been attributed quantitatively to the existence of a constrained vapor-rich dome between the two droplets. However, a dynamic decrease in the droplet radius due to solvent removal marks a return to symmetry in terms of evaporation and contact angle. We have described the variation in evaporation flux using a universal correction factor. We have also demonstrated the existence of a critical separation distance beyond which the droplets in the, droplet pair do not affect each other. The results are crucial to a plethora of applications ranging from surface patterning to lab-on-a-chip devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a Monte Carlo filter for recursive estimation of diffusive processes that modulate the instantaneous rates of Poisson measurements. A key aspect is the additive update, through a gain-like correction term, empirically approximated from the innovation integral in the time-discretized Kushner-Stratonovich equation. The additive filter-update scheme eliminates the problem of particle collapse encountered in many conventional particle filters. Through a few numerical demonstrations, the versatility of the proposed filter is brought forth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A state-based peridynamic formulation for linear elastic shells is presented. The emphasis is on introducing, possibly for the first time, a general surface based peridynamic model to represent the deformation characteristics of structures that have one geometric dimension much smaller than the other two. A new notion of curved bonds is exploited to cater for force transfer between the peridynamic particles describing the shell. Starting with the three dimensional force and deformation states, appropriate surface based force, moment and several deformation states are arrived at. Upon application on the curved bonds, such states yield the necessary force and deformation vectors governing the motion of the shell. By incorporating a shear correction factor, the formulation also accommodates analysis of shells that have higher thickness. In order to attain this, a consistent second order approximation to the complementary energy density is considered and incorporated in peridynamics via constitutive correspondence. Unlike the uncoupled constitution for thin shells, a consequence of a first order approximation, constitutive relations for thick shells are fully coupled in that surface wryness influences the in-plane stress resultants and surface strain the moments. Our proposal on the peridynamic shell theory is numerically assessed against simulations on static deformation of spherical and cylindrical shells, that of flat plates and quasi-static fracture propagation in a cylindrical shell. (C) 2016 Elsevier Ltd. All rights reserved.