267 resultados para chemical solution method
Resumo:
Spatial variations in the concentration of a reactive solute in solution are often encountered in a catalyst particle, and this leads to variation in the freezing point of the solution. Depending on the operating temperature, this can result in freezing of the solvent oil a portion of catalyst, rendering that part of the active area ineffective Freezing call occur by formation of a sharp front or it mush that separates the solid and fluid phases. In this paper, we model the extent of reduction in the active area due to freezing. Assuming that the freezing point decreases linearly with solute concentration, conditions for freezing to occur have been derived. At steady state, the ineffective fraction of catalyst pellet is found to be the same irrespective of the mode of freezing. Progress of freezing is determined by both the heat of reaction and the latent heat of fusion Unlike in freezing of alloys where the latter plays a dominant role, the exothermicity of the reaction has a significant effect on freezing in the presence of chemical reactions. A dimensionless group analogous to the Stefan number could be defined to capture the combined effect of both of these.
Resumo:
A fully implicit integration method for stochastic differential equations with significant multiplicative noise and stiffness in both the drift and diffusion coefficients has been constructed, analyzed and illustrated with numerical examples in this work. The method has strong order 1.0 consistency and has user-selectable parameters that allow the user to expand the stability region of the method to cover almost the entire drift-diffusion stability plane. The large stability region enables the method to take computationally efficient time steps. A system of chemical Langevin equations simulated with the method illustrates its computational efficiency.
Resumo:
Purpose - The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid-driven flow in a three-dimensional (3D), rectangular cavity, and compare the results with flow in an equivalent two-dimensional (2D) cavity. Design/methodology/approach - The second-order MRT model is implemented in a 3D LBM code. The flow structure in cavities of different aspect ratios (0.25-4) and Reynolds numbers (0.01-1000) is investigated. The LBM simulation results are compared with those from numerical solution of Navier-Stokes (NS) equations and with available experimental data. Findings - The 3D simulations demonstrate that 2D models may predict the flow structure reasonably well at low Reynolds numbers, but significant differences with experimental data appear at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of boundary layers near the side-walls in transverse direction (in 3D), due to which the vorticity in the core-region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow, the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase in Reynolds number. However, on the symmetry-plane, the flow structure variation with respect to cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary flow vortices whose axis is in the direction of the lid-motion are observed; these are weak at low. Reynolds numbers, but become quite strong at high Reynolds numbers. Originality/value - The findings will be useful in the study of variety of enclosed fluid flows.
Resumo:
In the present work we report a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant (cationic, anionic, non ionic and polymeric), without the use of any templates. The method is simple, inexpensive, and helps one to prepare nanostructures in quick time, measured in seconds and minutes. This method has been applied successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with changes in different process parameters, such as microwave power, irradiation time, identity of solvent, type of surfactant, and its concentration.
Resumo:
The synthesis of the octapeptide, benzyloxycarbonyl-(-aminoisobutyryl-L-prolyl)4-methyl ester [Z-(Aib-Pro)4-OMe] and an analysis of its solution conformation is reported. The octapeptide is shown to possess three strong intramolecular hydrogen bonds on the basis of studies of the solvent and temperature dependence of NH chemical shifts and rates of hydrogen-deuterium exchange. 13C studies are consistent with a structure involving only trans Aib-Pro bonds, while ir experiments support a hydrogen-bonded conformation. The Aib 3, 5, and 7 NH groups are shown to participate in hydrogen bonding. A 310 helical conformation compatible with the spectroscopic data is suggested. The proposed conformation consists of three type III -turns with Aib and Pro at the corners and stabilized by 4 1 intramolecular hydrogen bonds.
Resumo:
A new form of a multi-step transversal linearization (MTL) method is developed and numerically explored in this study for a numeric-analytical integration of non-linear dynamical systems under deterministic excitations. As with other transversal linearization methods, the present version also requires that the linearized solution manifold transversally intersects the non-linear solution manifold at a chosen set of points or cross-section in the state space. However, a major point of departure of the present method is that it has the flexibility of treating non-linear damping and stiffness terms of the original system as damping and stiffness terms in the transversally linearized system, even though these linearized terms become explicit functions of time. From this perspective, the present development is closely related to the popular practice of tangent-space linearization adopted in finite element (FE) based solutions of non-linear problems in structural dynamics. The only difference is that the MTL method would require construction of transversal system matrices in lieu of the tangent system matrices needed within an FE framework. The resulting time-varying linearized system matrix is then treated as a Lie element using Magnus’ characterization [W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math., VII (1954) 649–673] and the associated fundamental solution matrix (FSM) is obtained through repeated Lie-bracket operations (or nested commutators). An advantage of this approach is that the underlying exponential transformation could preserve certain intrinsic structural properties of the solution of the non-linear problem. Yet another advantage of the transversal linearization lies in the non-unique representation of the linearized vector field – an aspect that has been specifically exploited in this study to enhance the spectral stability of the proposed family of methods and thus contain the temporal propagation of local errors. A simple analysis of the formal orders of accuracy is provided within a finite dimensional framework. Only a limited numerical exploration of the method is presently provided for a couple of popularly known non-linear oscillators, viz. a hardening Duffing oscillator, which has a non-linear stiffness term, and the van der Pol oscillator, which is self-excited and has a non-linear damping term.
Resumo:
In order to understand self-diffusion (D) of a charged, flexible, and porous nanoscopic molecule in water, we carry out very long, fully atomistic molecular dynamics simulation of PAMAM dendrimer up to eight generations in explicit salt water under varying pH. We find that while the radius of gyration (R-g) varies as N-1/3, the self-diffusion constant (D) scales, surprisingly, as N-alpha, with alpha=0.39 at high pH and 0.5 at neutral pH, indicating a dramatic breakdown of Stokes-Einstein relation for diffusion of charged nanoscopic molecules. The variation in D as a function of radius of gyration demonstrates the importance of treating water and ions explicitly in the diffusion process of a flexible nanoscopic molecule. In agreement with recent experiments, the self-diffusion constant increases with pH, revealing the importance of dielectric friction in the diffusion process. The shape of a dendrimer is found to fluctuate on a nanosecond time scale. We argue that this flexibility (and also the porosity) of the dendrimer may play an important role in determining the mean square displacement of the dendrimer and the breakdown of the Stokes-Einstein relation between diffusion constant and the radius.
Resumo:
Synthetic analogues of naturally occurring triterpenoids; glycyrrhetinic acid, arjunolic acid, and boswellic acids, by modification of A-ring with a cyano- and enone-functionality, have been reported. A novel method of synthesis of α-cyanoenones from isoxazoles is reported. Bioassays using primary mouse macrophages and tumor cell lines indicate potent anti-inflammatory and cytotoxic activities associated with cyano-enones of boswellic acid and glycyrrhetinic acid.
Resumo:
Barrierless chemical reactions have often been modeled as a Brownian motion on a one-dimensional harmonic potential energy surface with a position-dependent reaction sink or window located near the minimum of the surface. This simple (but highly successful) description leads to a nonexponential survival probability only at small to intermediate times but exponential decay in the long-time limit. However, in several reactive events involving proteins and glasses, the reactions are found to exhibit a strongly nonexponential (power law) decay kinetics even in the long time. In order to address such reactions, here, we introduce a model of barrierless chemical reaction where the motion along the reaction coordinate sustains dispersive diffusion. A complete analytical solution of the model can be obtained only in the frequency domain, but an asymptotic solution is obtained in the limit of long time. In this case, the asymptotic long-time decay of the survival probability is a power law of the Mittag−Leffler functional form. When the barrier height is increased, the decay of the survival probability still remains nonexponential, in contrast to the ordinary Brownian motion case where the rate is given by the Smoluchowski limit of the well-known Kramers' expression. Interestingly, the reaction under dispersive diffusion is shown to exhibit strong dependence on the initial state of the system, thus predicting a strong dependence on the excitation wavelength for photoisomerization reactions in a dispersive medium. The theory also predicts a fractional viscosity dependence of the rate, which is often observed in the reactions occurring in complex environments.
Resumo:
The objective of the present study is to develop the reaction mechanism and kinetics of photoreduction of NO by CO. For this purpose, the reactions were conducted in the presence of Pd-ion-substituted nano-TiO2, Ti1-xPdxO2-delta, which was synthesized via a solution combustion method. The photocatalytic activity was investigated with unsubstituted TiO2, 1% Pd/TiO2(imp), and Ti1-xPdxO2-delta (where x = 0.05-0.3). No appreciable NO conversion was observed over unsubstituted TiO2, although, despite competitive adsorption of NO and CO on the Pd2+ sites, there was a significant reduction of NO over Ti1-xPdxO2-delta. The kinetic model showed that the enhanced catalytic activity is due to the NO photodissociation at the oxide-ion vacancy.
Resumo:
Creating nanoscale heterostructures with molecular-scale (<2 nm) metal wires is critical for many applications and remains a challenge. Here, we report the first time synthesis of nanoscale heterostructures with single-crystal molecular-scale Au nanowires attached to different nanostructure substrates. Our method involves the formation of Au nanoparticle seeds by the reduction of rocksalt AuCl nanocubes heterogeneously nucleated on the Substrates and subsequent nanowire growth by oriented attachment of Au nanoparticles from the Solution phase. Nanoscale heterostructures fabricated by such site-specific nucleation and growth are attractive for many applications including nanoelectronic device wiring, catalysis, and sensing.
Resumo:
We report the synthesis of Cd-substituted ZnO nanostructures (Zn1-xCdxO with x up to approximate to 0.09) by the high-pressure solution growth method. The synthesized nanostructures comprise nanocrystals that are both particles (similar to 10-15 nm) and rods which grow along the [002] direction as established by transmission electron microscope (TEM) and x-ray diffraction (XRD) analysis. Rietveld analysis of the XRD data shows a monotonic increase of the unit cell volume with the increase of Cd concentration. The optical absorption, as well as the photoluminescence (PL), shows a red shift on Cd substitution. The line width of the PL spectrum is related to the strain inhomogeneity and it peaks in the region where the CdO phase separates from the Zn1-xCdxO nanostructures. The time-resolved photoemission showed a long-lived (similar to 10 ns) component. We propose that the PL behaviour of the Zn1-xCdxO is dominated by strain in the sample with the red shift of the PL linked to the expansion of the unit cell volume on Cd substitution.
Resumo:
The conformational properties of foldamers generated from alpha gamma hybrid peptide sequences have been probed in the model sequence Boc-Aib-Gpn-Aib-Gpn-NHMe. The choice of alpha-aminoisobutyryl (Aib) and gabapentin (Gpn) residues greatly restricts sterically accessible coil formational space. This model sequence was anticipated to be a short segment of the alpha gamma C-12 helix, stabilized by three successive 4 -> 1 hydrogen bonds, corresponding to a backbone-expanded analogue of the alpha polypeptide 3(10)-helix. Unexpectedly, three distinct crystalline polymorphs were characterized in the solid state by X-ray diffraction. In one form, two successive C-12 hydrogen bonds were obtained at the N-terminus, while a novel C-17 hydrogen-bonded gamma alpha gamma turn was observed at the C-terminus. In the other two polymorphs, isolated C-9 and C-7 hydrogen-bonded turns were observed at Gpn (2) and Gpn (4). Isolated C-12 and C-9 turns were also crystallographically established in the peptides Boc-Aib-Gpn-Aib-OMe and Boc-Gpn-Aib-NHMe, respectively. Selective line broadening of NH resonances and the observation of medium range NH(i)<-> NH(i+2) NOEs established the presence of conformational heterogeneity for the tetrapeptide in CDCl3 solution. The NMR results are consistent with the limited population of the continuous C-12 helix conformation. Lengthening of the (alpha gamma)(n) sequences in the nonapeptides Boc-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Xxx (Xxx = Aib, Leu) resulted in the observation of all of the sequential NOEs characteristic of an alpha gamma C-12 helix. These results establish that conformational fragility is manifested in short hybrid alpha gamma sequences despite the choice of conformationally constrained residues, while stable helices are formed on chain extension.
Resumo:
Acyl Carrier Protein (ACP) from the malaria parasite, Plasmodium falciparum (PfACP) in its holo form is found to exist in two conformational states in solution. Unique 3D solution structures of holo-PfACP have been determined for both equilibrium conformations, using high-resolution NMR methods. Twenty high-resolution solution structures for each of the two forms of holo-PfACP have been determined on the basis of 1226 and 1218 unambiguously assigned NOEs (including NOEs between 4 '-phosphopantetheine prosthetic group (4 '-PP) and protein), 55 backbone dihedral angles and 26 hydrogen bonds. The atomic rmsd values of the determined structures of two equilibrium forms, about the mean coordinates of the backbone and heavy atoms, are 0.48 +/- 0.09 and 0.92 +/- 0.10 and 0.49 +/- 0.08 and 0.97 +/- 0.11 angstrom, respectively. The interaction of 4 '-PP with the polypeptide backbone is reported here for the first time for any of the ACPs. The structures of holo-PfACP consist of three well-defined helices that are tightly packed. The structured regions of the molecule are stabilized by extensive hydrophobic interactions. The difference between the two forms arises from a reorientation of the 4 '-PP group. The enthalpy difference between the two forms, although small, implies that a conformational switch is essential for the activation of holo-ACP. Sequence and structures of holo-PfACP have been compared with those of the ACPs from type I and type II fatty acid biosynthesis pathways (FAS), in particular with the ACP from rat and the butyryl-ACP from E. coli. The PfACP structure, thus determined has several novel features hitherto not seen in other ACPs.
Resumo:
We report the synthesis of Cd-substituted ZnO nanostructures (Zn1-xCdxO with x up to approximate to 0.09) by the high-pressure solution growth method. The synthesized nanostructures comprise nanocrystals that are both particles (similar to 10-15 nm) and rods which grow along the [002] direction as established by transmission electron microscope (TEM) and x-ray diffraction (XRD) analysis. Rietveld analysis of the XRD data shows a monotonic increase of the unit cell volume with the increase of Cd concentration. The optical absorption, as well as the photoluminescence (PL), shows a red shift on Cd substitution. The line width of the PL spectrum is related to the strain inhomogeneity and it peaks in the region where the CdO phase separates from the Zn1-xCdxO nanostructures. The time-resolved photoemission showed a long-lived (similar to 10 ns) component. We propose that the PL behaviour of the Zn1-xCdxO is dominated by strain in the sample with the red shift of the PL linked to the expansion of the unit cell volume on Cd substitution.