168 resultados para cefaclor determination
Resumo:
Sequence specific resonance assignments have been obtained for H-1, C-13 and N-15 nuclei of the 21 kDa (188 residues long) glutamine amido transferase subunit of guanosine monophosphate synthetase from Methanocaldococcus jannaschii. From an analysis of H-1 and C-13(alpha), C-13(beta) secondary chemical shifts, (3) JH(N)H(alpha) scalar coupling constants and sequential, short and medium range H-1-H-1 NOEs, it was deduced that the glutamine amido transferase subunit has eleven strands and five helices as the major secondary structural elements in its tertiary structure.
Resumo:
A novel method is proposed for fracture toughness determination of graded microstructurally complex (Pt,Ni)Al bond coats using edge-notched doubly clamped beams subjected to bending. Micron-scale beams are machined using the focused ion beam and loaded in bending under a nanoindenter. Failure loads gathered from the pop-ins in the load-displacement curves combined with XFEM analysis are used to calculate K-c at individual zones, free from substrate effects. The testing technique and sources of errors in measurement are described and possible micromechanisms of fracture in such heterogeneous coatings discussed.
Resumo:
In this paper we look for nonuniform rotating beams that are isospectral to a given uniform nonrotating beam. A rotating nonuniform beam is isospectral to the given uniform nonrotating beam if both the beams have the same spectral properties, i.e., both the beams have the same set of natural frequencies under a given boundary condition. The Barcilon-Gottlieb type transformation is proposed that converts the governing equation of a rotating beam to that of a uniform nonrotating beam. We show that there exist rotating beams isospectral to a given uniform nonrotating beam under some special conditions. The boundary conditions we consider are clamped-free and hinged-free with an elastic hinge spring. An upper bound on the rotation speed for which isospectral beams exist is proposed. The mass and stiffness distributions for these nonuniform rotating beams which are isospectral to the given uniform nonrotating beam are obtained. We use these mass and stiffness distributions in a finite element analysis to show that the obtained beams are isospectral to the given uniform nonrotating beam. A numerical example of a beam having a rectangular cross section is presented to show the application of our analysis. DOI: 10.1115/1.4006460]
Resumo:
A wave-based method is developed to quantify the defect due to porosity and also to locate the porous regions, in a composite beam-type structure. Wave propagation problem for a porous laminated composite beam is modeled using spectral finite element method (SFEM), based on the modified rule of mixture approach, which is used to include the effect of porosity on the stiffness and density of the composite beam structure. The material properties are obtained from the modified rule of mixture model, which are used in a conventional SFEM to develop a new model for solving wave propagation problems in porous laminated composite beam. The influence of the porosity content on the group speed and also the effect of variation in theses parameters on the time responses are studied first, in the forward problem. The change in the time responses with the change in the porosity of the structure is used as a parameter to find the porosity content in a composite beam. The actual measured response from a structure and the numerically obtained time responses are used for the estimation of porosity, by solving a nonlinear optimization problem. The effect of the length of the porous region (in the propagation direction), on the time responses, is studied. The damage force indicator technique is used to locate the porous region in a beam and also to find its length, using the measured wave propagation responses. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Thermodynamic properties of Dysprosium rhodite (DyRhO3) are measured in the temperature range from 900 to 1,300 K using a solid-state electrochemical cell incorporating yttria-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of DyRhO3 with O-type perovskite structure from its components binary oxides, Dysprosia with C-rare earth structure and beta-Rh2O3 with orthorhombic structure, can be represented by the equation: Delta G(f(OX))(O) (+/- 182)/J mol(-1) = -52710+3.821(T/K). By using the thermodynamic data for DyRhO3 from experiment and auxiliary data for other phases from the literature, the phase relations in the system Dy-Rh-O are computed. Thermodynamic data for intermetallic phases in the binary system Dy-Rh, required for constructing the chemical potential diagrams, are evaluated using calorimetric data available in the literature for three intermetallics and Miedema's model, consistent with the phase diagram. The results are presented in the form of Gibbs triangle, oxygen potential-composition diagram, and three-dimensional chemical potential diagram at 1,273 K. Temperature-composition diagrams at constant oxygen partial pressures are also developed. The decomposition temperature of DyRhO3 is 1,732 (+/- 2.5) K in pure oxygen and 1,624 (+/- 2.5) K and in air at standard pressure.
Resumo:
The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, (3R,4S,5S,6R)-5-methoxy-4-(2R,3R)-2-methyl-3-(3-methylbut-2-enyl) oxiran-2-yl]-1-oxaspiro2.5]octan-6-yl] N-(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only similar to 10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ((3R, 4S, 5S, 6R)-5-methoxy-4-(2R, 3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro2.5]octan-6 -yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.
Resumo:
Enantiospecific total synthesis and determination of the absolute stereochemistry of the alpha-pyrone-containing natural product synargentolide B were accomplished. The absolute stereochemistry of the natural product was established by synthesizing the possible diastereomers and comparison of the data with those reported for the natural product. During the process, total synthesis of the putative structure of related natural product 6R-1S,2R,SR,6S-(tetraacetyloxy)-3E-heptenyl]-5,6-dihydro-2H-pyran-2-o ne was also accomplished and confirmed by X-ray crystal structure analysis. Wittig-Horner reaction of a chiral phosphonate derived from (S)-lactic acid and ring-closing metathesis were the key reactions during the course of the total synthesis.
Resumo:
Disulfide crosslinks are ubiquitous in natural peptides and proteins, providing rigidity to polypeptide scaffolds. The assignment of disulfide connectivity in multiple crosslinked systems is often difficult to achieve. Here, we show that rapid unambiguous characterisation of disulfide connectivity can be achieved through direct mass spectrometric CID fragmentation of the disulfide intact polypeptides. The method requires a direct mass spectrometric fragmentation of the native disulfide bonded polypeptides and subsequent analysis using a newly developed program, DisConnect. Technical difficulties involving direct fragmentation of proteins are surmounted by an initial proteolytic nick and subsequent determination of the structures of these proteolytic peptides through DisConnect. While the connectivity in proteolytic fragments containing one cystine is evident from the MS profile alone, those with multiple cystines are subjected to subsequent mass spectrometric fragmentation. The wide applicability of this method is illustrated using examples of peptide hormones, peptide toxins, proteins, and disulfide foldamers of a synthetic analogue of a marine peptide toxin. The method, coupled with DisConnect, provides an unambiguous, straightforward approach, especially useful for the rapid screening of the disulfide crosslink fidelity in recombinant proteins, determination of disulfide linkages in natural peptide toxins and characterization of folding intermediates encountered in oxidative folding pathways.
Resumo:
The solid phase formed by a binary mixture of oppositely charged colloidal particles can be either substitutionally ordered or substitutionally disordered depending on the nature and strength of interactions among the particles. In this work, we use Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique to map out the favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase. The inter-particle interactions are modeled using the hard core Yukawa potential but the method can be easily extended to other systems of interest. The study obtains a map of interactions depicting regions indicating the type of the crystalline aggregate that forms upon phase transition.
Resumo:
The RILEM work-of-fracture method for measuring the specific fracture energy of concrete from notched three-point bend specimens is still the most common method used throughout the world, despite the fact that the specific fracture energy so measured is known to vary with the size and shape of the test specimen. The reasons for this variation have also been known for nearly two decades, and two methods have been proposed in the literature to correct the measured size-dependent specific fracture energy (G(f)) in order to obtain a size-independent value (G(F)). It has also been proved recently, on the basis of a limited set of results on a single concrete mix with a compressive strength of 37 MPa, that when the size-dependent G(f) measured by the RILEM method is corrected following either of these two methods, the resulting specific fracture energy G(F) is very nearly the same and independent of the size of the specimen. In this paper, we will provide further evidence in support of this important conclusion using extensive independent test results of three different concrete mixes ranging in compressive strength from 57 to 122 MPa. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We present an explicit computable integral solution of the electric field generated at the focal region of a cylindrical lens. This representation is based on vectorial diffraction theory and further enables the computation of the system point spread function of a cylindrical lens. It is assumed that there is no back-scattering and the contribution from the evanescent field is negligible. Stationary phase approximation along with the Fresnel transmission coefficients are employed for evaluating the polarization dependent electric field components. Studies were carried out to determine the polarization effects and to calculate the system resolution. The effect of s -, p - and randomly polarized light is studied on the fixed sample (electric dipole is fixed in space). Proposed approach allows better understanding of electric field effects at the focus of a cylindrical aplanatic system. This opens up future developments in the field of fluorescence microscopy and optical imaging. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
The experimental solubilities of the mixture of nitrophenol (m- and p-) isomers were determined at 308, 318 and 328 K over a pressure range of 10-17.55 MPa. Compared to the binary solubilities, the ternary solubilities of m-nitrophenol increased at 308, 318 and 328 K. The ternary solubilities of p-nitrophenol increased at 308 K, while the ternary solubilities decreased at lower pressures and increased at higher pressure at 318 and 328 K. The solubilities of the solid mixtures in supercritical carbon dioxide (SCCO2) were correlated with solution models by incorporating the non-idealities using activity coefficient based models. The Wilson and NRTL activity coefficient models were applied to determine the nature of the interactions between the molecules. The equation developed by using the NRTL model has three parameters and correlates mixture solubilities of solid solutes in terms of temperature and cosolute composition. The equation derived from the Wilson model contains five parameters and correlates solubilities in terms of temperature, density and cosolute composition. These two new equations developed in this work were used to correlate the solubilities of 25 binary solid mixtures including the current data. The average AARDs of the model equations derived using the NRTL and Wilson models for the solid mixtures were found to be 7% and 4%, respectively. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Be the strong coupling constant alpha(s) from the tau hadronn width using a renormalization group summed (RGS) expansion of the QCD Adler lunction. The main theoretical uncertainty in the extraction of as is due to the manner in which renormalization group invariance is implemented, and the as yet uncalculated higher order terms in the QCD perturbative series. We show that new expansion exhibits good renormalization group improvement and the behavior of the series is similar to that of the standard RGS expansion. The value of the strong coupling in (MS) over bar scheme obtained with the RCS expansion is alpha(s) (M-tau(2)) = 0.338 +/- 0.010. The convergence properties of the new expansion can be improved by Bond transformation and analytic continuation in t he Bond plane. This is discussed elsewhere in these issues.
Resumo:
Recent data from high-statistics experiments that have measured the modulus of the pion electromagnetic form factor from threshold to relatively high energies are used as input in a suitable mathematical framework of analytic continuation to find stringent constraints on the shape parameters of the form factor at t = 0. The method uses also as input a precise description of the phase of the form factor in the elastic region based on Fermi-Watson theorem and the analysis of the pi pi scattering amplitude with dispersive Roy equations, and some information on the spacelike region coming from recent high precision experiments. Our analysis confirms the inconsistencies of several data on the modulus, especially from low energies, with analyticity and the input phase, noted in our earlier work. Using the data on the modulus from energies above 0.65 GeV, we obtain, with no specific parametrisation, the prediction < r(pi)(2)> is an element of (0.42, 0.44) fm(2) for the charge radius. The same formalism leads also to very narrow allowed ranges for the higher-order shape parameters at t = 0, with a strong correlation among them.
Resumo:
Presented are new measurements of the standard Gibbs free energy of formation of rhombohedral LaCrO3 from component oxides La2O3 and Cr2O3 in the temperature range from 875 to 1175K, using a bielectrolyte solid-state cell incorporating single crystal CaF2 and composition-graded solid electrolyte (LaF3)(y)(CaF2)(1-y) (y=0-0.32). The results can be represented analytically as Delta G(f(ox))(o) (+/- 2270)/Jmol(-1)=-72329+4.932 (T/K). The measurements were undertaken to resolve serious discrepancies in the data reported in the literature. A critical analysis of previous electrochemical measurements indicates several deficiencies that have been rectified in this study. The enthalpy of formation obtained in this study is consistent with calorimetric data. The standard enthalpy of formation of orthorhombic LaCrO3 from elements at 298.15K computed from the results of this study is Delta H-f(298.15)(o)/kJmol(-1)=-1536.2 (+/- 7). The standard entropy of orthorhombic LaCrO3 at 298.15K is estimated as 99.0 (+/- 4.5)J(molK)(-1).