213 resultados para Vortices in fluids


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the vortex behavior of YBa2Cu3O7-delta thin films sandwiched between two ferromagnetic layers (La0.7Sr0.3MnO3/YBa2Cu3O7-delta/La0.7Sr0.3MnO3). The magnetization study on La0.7Sr0.3MnO3/YBa2Cu3O7-delta/La0.7Sr0.3MnO3 trilayers conspicuously shows the presence of both ferromagnetic and diamagnetic phases. The magnetotransport study on the trilayers reveals a significant reduction in the activation energy (U) for the vortex motion in YBa2Cu3O7-delta. Besides, the ``U'' exhibits a logarithmic dependence on the applied magnetic field which directly indicates the existence of decoupled two-dimensional (2D) pancake vortices present in the CuO2 layers. The evidence of 2D decoupled vortex behavior in La0.7Sr0.3MnO3/YBa2Cu3O7-delta/La0.7Sr0.3MnO3 is believed to arise from (a) the weakening of superconducting coherence length along the c-axis and (b) enhanced intraplane vortex-vortex interaction due to the presence of ferromagnetic layers. (C) 2010 American Institute of Physics. doi: 10.1063/1.3524545]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coalescence processes are investigated during phase separation in a density-matched liquid mixture (partially deuterated cyclohexane and methanol) under near-critical conditions. As a result of the interplay between capillary and lubrication forces, ''nose'' coalescence appears to be always associated with the slow growth of isolated droplets (exponent almost-equal-to 1/3), whereas ''dimple'' coalescence corresponds to the fast growth of interconnected droplets (exponent almost-equal-to 1). At each stage of growth, the distribution of droplets trapped during dimple coalescence is reminiscent of all of the previous coalescence events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaction between two conical sheets of liquid formed by a coaxial swirl injector has been studied using water in the annular orifice and potassium permanganate solution in the inner orifice. Experiments using photographic techniques have been conducted to study the influence of the inner jet on outer conical sheet spray characteristics such as spray cone angle and break-up length. The core spray has a strong influence on the outer sheet when the pressure drop in the latter is low. This is attributed to the pressure variations caused by ejector effects. This paper also discusses the merging and separation behavior of the liquid sheets which exhibits hysteresis effect while injector pressure drop is varied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies related to cavitation inception process in separated flows are reported. Experimental observations of bubble appearance in grooves with laminar or turbulent boundary layer over them have clearly shown that gaseous diffusion process is significantly enhanced in turbulent flow. This process can lead to local nuclei size modification in environment similar to that of flow over a groove, like laminar separation "bubbles." Cavitation inception modeling including this aspect is carried out for predicting inception conditions associated with "bubble-ring" cavitation commonly observed on hemispherically nosed axisymmetric body. Qualitative dependence of predicted inception numbers with velocity is found to agree very well with experimental observations of Carroll (1981).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate analytically the average number of fixed points in the Hopfield model of associative memory when a random antisymmetric part is added to the otherwise symmetric synaptic matrix. Addition of the antisymmetric part causes an exponential decrease in the total number of fixed points. If the relative strength of the antisymmetric component is small, then its presence does not cause any substantial degradation of the quality of retrieval when the memory loading level is low. We also present results of numerical simulations which provide qualitative (as well as quantitative for some aspects) confirmation of the predictions of the analytic study. Our numerical results suggest that the analytic calculation of the average number of fixed points yields the correct value for the typical number of fixed points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a study of the growth of local, nonaxisymmetric perturbations in gravitationally coupled stars and gas in a differentially rotating galactic disk. The stars and gas are treated as two isothermal fluids of different velocity dispersions, with the stellar velocity dispersion being greater than that for the gas. We examine the physical effects of inclusion of a low-velocity dispersion component (gas) on the growth of non-axisymmetric perturbations in both stars and gas, as done for the axisymmetric case by Jog & Solomon. The amplified perturbations in stars and gas constitute trailing, material, spiral features which may be identified with the local spiral features seen in all spiral galaxies. The formulation of the two-fluid equations closely follows the one-fluid treatment by Goldreich & Lynden-Bell. The local, linearized perturbation equations in the sheared frame are solved to obtain the results for a temporary growth via swing amplification. The problem is formulated in terms of five dimensionless parameters-namely, the Q-factors for stars and gas, respectively; the gas mass fraction; the shearing rate in the galactic disk; and the length scale of perturbation. By using the observed values of these parameters, we obtain the amplifications and the pitch angles for features in stars and gas for dynamically distinct cases, as applicable for different regions of spiral galaxies. A real galaxy consisting of stars and gas may display growth of nonaxisymmetric perturbations even when it is stable against axisymmetric perturbations and/or when either fluid by itself is stable against non-axisymmetric perturbations. Due to its lower velocity dispersion, the gas exhibits a higher amplification than do the stars, and the amplified gas features are slightly more tightly wound than the stellar features. When the gas contribution is high, the stellar amplification and the range of pitch angles over which it can occur are both increased, due to the gravitational coupling between the two fluids. Thus, the two-fluid scheme can explain the origin of the broad spiral arms in the underlying old stellar populations of galaxies, as observed by Schweizer and Elmegreen & Elmegreen. The arms are predicted to be broader in gas-rich galaxies, as is indeed seen for example in M33. In the linear regime studied here, the arm contrast is shown to increase with radius in the inner Galaxy, in agreement with observations of external galaxies by Schweizer. These results follow directly due to the inclusion of gas in the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peristaltic transport of two fluids occupying the peripheral layer and the core in an elliptic tube is, investigated in elliptic cylindrical co-ordinate system, under long wavelength and low Reynolds number approximations. The effect of peripheral-layer viscosity on the flow rate and the frictional force for a slightly elliptic tube is discussed. The limiting results for the one-fluid model are obtained for different eccentricities of the undisturbed tube cross sections with the same area. As a result of non-uniformity of the peristaltic wave, two different amplitude ratios are defined and the time-averaged flux and mechanical efficiency are studied for different eccentricities. It is observed that the time-averaged flux is not affected significantly by the pressure drop when the eccentricity is large. For the peristaltic waves with same area variation, the pumping seems to improve with the eccentricity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We set up the generalized Langevin equations describing coupled single-particle and collective motion in a suspension of interacting colloidal particles in a shear how and use these to show that the measured self-diffusion coefficients in these systems should be strongly dependent on shear rate epsilon. Three regimes are found: (i) an initial const+epsilon(.2), followed by (ii) a large regime of epsilon(.1/2) behavior, crossing over to an asymptotic power-law approach (iii) D-o - const x epsilon(.-1/2) to the Stokes-Einstein value D-o. The shear dependence is isotropic up to very large shear rates and increases with the interparticle interaction strength. Our results provide a straightforward explanation of recent experiments and simulations on sheared colloids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discrete vortex simulations of the mixing layer carried out in the past have usually involved large induced velocity fluctuations, and thus demanded rather long time-averaging to obtain satisfactory values of Reynolds stresses and third-order moments. This difficulty has been traced here, in part, to the use of discrete vortices to model what in actuality are continuous vortex sheets. We propose here a novel two-dimensional vortex sheet technique for computing mixing layer flow in the limit of infinite Reynolds number. The method divides the vortex sheet into constant-strength linear elements, whose motions are computed using the Biot-Savart law. The downstream far-field is modelled by a steady vorticity distribution derived by application of conical similarity from the solution obtained in a finite computational domain. The boundary condition on the splitter plate is satisfied rigorously using a doublet sheet. The computed large-scale roll-up of the vortex sheet is qualitatively similar to experimentally obtained shadow-graphs of the plane turbulent mixing layer. The mean streamwise velocity profile and the growth rate agree well with experimental data. The presently computed Reynolds stresses and third-order moments are comparable with experimental and previous vortex-dynamical results, without using any external parameter (such as the vortex core-size) of the kind often used in the latter. The computed autocorrelations are qualitatively similar to experimental results along the top and bottom edges of the mixing layer, and show a well-defined periodicity along the centreline. The accuracy of the present computation is independently established by demonstrating negligibly small changes in the five invariants (including the Hamiltonian) in vortex dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A monotonic decrease in viscosity with increasing shear stress is a known rheological response to shear flow in complex fluids in general and for flocculated suspensions in particular. Here we demonstrate a discontinuous shear-thickening transition on varying shear stress where the viscosity jumps sharply by four to six orders of magnitude in flocculated suspensions of multiwalled carbon nanotubes (MWNT) at very low weight fractions (approximately 0.5%). Rheooptical observations reveal the shear-thickened state as a percolated structure of MWNT flocs spanning the system size. We present a dynamic phase diagram of the non-Brownian MWNT dispersions revealing a starting jammed state followed by shear-thinning and shear-thickened states. The present study further suggests that the shear-thickened state obtained as a function of shear stress is likely to be a generic feature of fractal clusters under flow, albeit under confinement. An understanding of the shear-thickening phenomena in confined geometries is pertinent for flow-controlled fabrication techniques in enhancing the mechanical strength and transport properties of thin films and wires of nanostructured composites as well as in lubrication issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show by numerical simulations that discretized versions of commonly studied continuum nonlinear growth equations (such as the Kardar-Parisi-Zhangequation and the Lai-Das Sarma-Villain equation) and related atomistic models of epitaxial growth have a generic instability in which isolated pillars (or grooves) on an otherwise flat interface grow in time when their height (or depth) exceeds a critical value. Depending on the details of the model, the instability found in the discretized version may or may not be present in the truly continuum growth equation, indicating that the behavior of discretized nonlinear growth equations may be very different from that of their continuum counterparts. This instability can be controlled either by the introduction of higher-order nonlinear terms with appropriate coefficients or by restricting the growth of pillars (or grooves) by other means. A number of such ''controlled instability'' models are studied by simulation. For appropriate choice of the parameters used for controlling the instability, these models exhibit intermittent behavior, characterized by multiexponent scaling of height fluctuations, over the time interval during which the instability is active. The behavior found in this regime is very similar to the ''turbulent'' behavior observed in recent simulations of several one- and two-dimensional atomistic models of epitaxial growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural state of K-feldspars in the quartzofeldspathic gneisses, charnockites, metapelites and pegmatites from the southern Kamataka, northern Tamil Nadu and southern Kerala high-grade regions of southern India has been characterized using petrographic and powder X-ray diffraction methods. The observed distribution pattern of structural state with a preponderance of disordered K-feldspar polymorphs in granulites compared to the ordered microclines in the amphibolite facies rocks is interpreted to reflect principally the varying H2O contents in the metamorphic-metasomatic fluids across metamorphic grade. The K-feldspars in the pegmatites of granitic derivation and in a pegmatite of inferred metamorphic origin also point to the important role of aqueous fluids in their structural state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonequilibrium dynamic phase transition, in the kinetic Ising model in the presence of an oscillating magnetic field has been studied both by Monte Carlo simulation and by solving numerically the mean-field dynamic equation of motion for the average magnetization. In both cases, the Debye ''relaxation'' behavior of the dynamic order parameter has been observed and the ''relaxation time'' is found to diverge near the dynamic transition point. The Debye relaxation of the dynamic order parameter and the power law divergence of the relaxation time have been obtained from a very approximate solution of the mean-field dynamic equation. The temperature variation of appropriately defined ''specific heat'' is studied by the Monte Carlo simulation near the transition point. The specific heat has been observed to diverge near the dynamic transition point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonequilibrium dynamic phase transition in the kinetic Ising model in the presence of an oscillating magnetic field is studied by Monte Carlo simulation. The fluctuation of the dynamic older parameter is studied as a function of temperature near the dynamic transition point. The temperature variation of appropriately defined ''susceptibility'' is also studied near the dynamic transition point. Similarly, the fluctuation of energy and appropriately defined ''specific heat'' is studied as a function of temperature near the dynamic transition point. In both cases, the fluctuations (of dynamic order parameter and energy) and the corresponding responses diverge (in power law fashion) near the dynamic transition point with similar critical behavior (with identical exponent values).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform computer simulations of a Cahn-Hilliard model of phase separation that has dynamical asymmetry between the two coexisting phases. The dynamical asymmetry is incorporated by considering a mobility function that is order parameter dependent. Simulations of this model reveal morphological features similar to those observed in viscoelastic phase separation. In the early stages, the minority phase domains form a percolating structure that shrinks with time, eventually leading to the formation of disconnected regions that are characterized by the presence of random interfaces as well as isolated droplets. The domains grow as L(t)similar to t(1/3) in the very late stages. Although dynamical scaling is violated in the area shrinking regime, it is restored at late times. However, the form of the scaling function is found to depend on the extent of dynamical asymmetry. [S1063-651X(99)12101-9].