139 resultados para Visual selection
Resumo:
Tb0.3Dy0.7Fe1.95 alloy was directionally solidified by using a modified Bridgman technique at a wide range of growth rates of 5 to 100 cm/h. The directionally grown samples exhibited plane front solidification morphology up to a growth rate of 90 cm/h. Typical island banding feature was observed closer to the chilled end, which eventually gave rise to irregular peritectic coupled growth (PCG). The PCG gained prominence with an increase in the growth rate. The texture study revealed formation of strong aOE (c) 311 > texture in a lower growth rate regime, aOE (c) 110 > and ``rotated aOE (c) 110 > aEuroe in an intermediate growth regime, and aOE (c) 112 > in a higher growth rate regime. In-depth analysis of the atomic configuration of a solid-liquid interface revealed that the growth texture is influenced by the kinetics of atomic attachment to the solid-liquid interface, which is intimately related to a planar packing fraction and an atomic stacking sequence of the interfacial plane. The mechanism proposed in this article is novel and will be useful in addressing the orientation selection mechanism of topologically closed packed intermetallic systems. The samples grown at a higher growth rate exhibit larger magnetostriction (lambda) and d lambda/dH owing to the absence of pro-peritectic (Tb,Dy)Fe-3 and formation of aOE (c) 112 > texture, which lies closer to the easy magnetization direction (EMD).
Resumo:
Since streaming data keeps coming continuously as an ordered sequence, massive amounts of data is created. A big challenge in handling data streams is the limitation of time and space. Prototype selection on streaming data requires the prototypes to be updated in an incremental manner as new data comes in. We propose an incremental algorithm for prototype selection. This algorithm can also be used to handle very large datasets. Results have been presented on a number of large datasets and our method is compared to an existing algorithm for streaming data. Our algorithm saves time and the prototypes selected gives good classification accuracy.
Resumo:
Cooperative relaying combined with selection exploits spatial diversity to significantly improve the performance of interference-constrained secondary users in an underlay cognitive radio network. We present a novel and optimal relay selection (RS) rule that minimizes the symbol error probability (SEP) of an average interference-constrained underlay secondary system that uses amplify-and-forward relays. A key point that the rule highlights for the first time is that, for the average interference constraint, the signal-to-interference-plus-noise-ratio (SINR) of the direct source-to-destination (SI)) link affects the choice of the optimal relay. Furthermore, as the SINR increases, the odds that no relay transmits increase. We also propose a simpler, more practical, and near-optimal variant of the optimal rule that requires just one bit of feedback about the state of the SD link to the relays. Compared to the SD-unaware ad hoc RS rules proposed in the literature, the proposed rules markedly reduce the SEP by up to two orders of magnitude.
Resumo:
We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in internal details, such as texture; (c) differences in emergent attributes, such as symmetry; and (d) differences in global properties, such as orientation or overall configuration of parts. Our results elucidate an enduring question in object vision by showing that the whole object is not a sum of its parts but a sum of its many attributes.