250 resultados para Variable parameters
Resumo:
The effect of surface mass transfer on buoyancy induced flow in a variable porosity medium adjacent to a heated vertical plate is studied for high Rayleigh numbers. Similarity solutions are obtained within the frame work of boundary layer theory for a power law variation in surface temperature,T Wpropx lambda and surface injectionv Wpropx(lambda–1/2). The analysis incorporates the expression connecting porosity and permeability and also the expression connecting porosity and effective thermal diffusivity. The influence of thermal dispersion on the flow and heat transfer characteristics are also analysed in detail. The results of the present analysis document the fact that variable porosity enhances heat transfer rate and the magnitude of velocity near the wall. The governing equations are solved using an implicit finite difference scheme for both the Darcy flow model and Forchheimer flow model, the latter analysis being confined to an isothermal surface and an impermeable vertical plate. The influence of the intertial terms in the Forchheimer model is to decrease the heat transfer and flow rates and the influence of thermal dispersion is to increase the heat transfer rate.
Resumo:
To evaluate the parameters in the two-parameter fracture model, i.e. the critical stress intensity factor and critical crack tip opening displacement for the fracture of plain concrete in Mode 1 for the given test configuration and geometry, considerable computational effort is necessary. A simple graphical method has been proposed using normalized fracture parameters for the three-point bend (3PB) notched specimen and the double-edged notched (DEN) specimen. A similar graphical method is proposed to compute the maximum load carrying capacity of a specimen, using the critical fracture parameters both for 3PB and DEN configurations.
Resumo:
Tower platforms, with instrumentation at six levels above the surface to a height of 30 m, were used to record various atmospheric parameters in the surface layer. Sensors for measuring both mean and fluctuating quantities were used, with the majority of them indigenously built. Soil temperature sensors up to a depth of 30 cm from the surface were among the variables connected to the mean data logger. A PC-based data acquisition system built at the Centre for Atmospheric Sciences, IISc, was used to acquire the data from fast response sensors. This paper reports the various components of a typical MONTBLEX tower observatory and describes the actual experiments carried out in the surface layer at four sites over the monsoon trough region as a part of the MONTBLEX programme. It also describes and discusses several checks made on randomly selected tower data-sets acquired during the experiment. Checks made include visual inspection of time traces from various sensors, comparative plots of sensors measuring the same variable, wind and temperature profile plots calculation of roughness lengths, statistical and stability parameters, diurnal variation of stability parameters, and plots of probability density and energy spectrum for the different sensors. Results from these checks are found to be very encouraging and reveal the potential for further detailed analysis to understand more about surface layer characteristics.
Resumo:
Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is-first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.
Resumo:
Integral excess free energy of a quaternary system has been expressed in terms of the MacLaurin infinite series. The series is subjected to appropriate boundary conditions and each of the derivatives correlated to the corresponding interaction coefficients. The derivation of the partial functions involves extensive summation of various infinite series pertaining to the first order and quaternary parameters to remove any truncational error. The thermodynamic consistency of the derived partials has been established based on the Gibbs-Duhem relations. The equations are used to interpret the thermodynamic properties of the Fe-Cr-Ni-N system.
Resumo:
We have synthesized five new cholesterol based gemini cationic lipids possessing hydroxyethyl (-CH2CH2OH) function on each head group, which differ in the length of the polymethylene spacer chain. These gemini lipids are important for gene delivery processes as they possess pre-optimized molecular features, e. g., cholesterol backbone, ether linkage and a variable spacer chain between both the headgroups of the gemini lipids. Cationic liposomes were prepared from each of these lipids individually and as a mixture of individual cationic gemini lipid and 1,2-dioleoyl phosphatidylethanolamine (DOPE). Each gemini lipid based formulation induced better transfection activity than that of their monomeric counterpart. One such gemini lipid with a -(CH2)(12)-spacer, HG-12, showed dramatic increase in the mean fluorescence intensity due to the expression of green-fluorescence protein (GFP) in the presence of 10% FBS compared to the conditions where there was no serum. Other gemini lipids retained their gene transfection efficiency without any marked decrease in the presence of serum. The only exception was seen with the gemini with a -(CH2)(3)-spacer, HG-3, which on gene transfection in the presence of 10% FBS lost similar to 70% of its transfection efficiency. Overall the gemini lipid with a -(CH2)(5)-spacer, HG-5, showed the highest transfection activity at N/P (lipid/DNA) ratio of 0.5 and lipid : DOPE molar ratio of 2. Upon comparison of the relevant parameters, e. g., %-transfected cells, the amount of DNA transfected to each cell and %-cell viability all together against Lipofectamine 2000, one of the best commercial transfecting agents, the optimized lipid formulation based on DOPE/HG-5 was found to be comparable. In terms of its ability to induce gene-transfer in the presence of serum and shelf-life DOPE/HG-5 liposome was found to be superior to its commercial counterpart. Confocal imaging analysis confirmed that in the presence of 10% serum using a Lipid : DOPE of 1 : 4 and N/P charge ratio of 0.75 with 1.2 mu g DNA per well, HG-5 is better than Lipofectamine 2000.
Resumo:
The present investigation analyses the thermodynamic behaviour of the surfaces and adsorption as a function of temperature and composition in the Fe-S-O melts based on the Butler's equations. The calculated-values of the surface tensions exhibit an elevation or depression depending on the type of the added solute at a concentration which coincides with that already present in the system. Generally, the desorption of the solutes as a function of temperature results in an initial increase followed by a decrease in the values of the surface tension. The observations are analyzed based on the surface interaction parameters which are derived in the present research.
Resumo:
Mulberry fiber (Bivoltine) and non-mulberry fiber (Tassar) were subjected to stress-strain studies and the corresponding samples were examined using wide angle X-ray scattering studies. Here we have two different characteristic stress-strain curves and this has been correlated with changes in crystallite shape ellipsoids in all the fibers. Exclusive crystal structure studies of Tassar fibers show interesting feature of transformation from antiparallel chains to parallel chains.
Resumo:
Vapour adsorption refrigeration systems (VAdS) have the advantage of scalability over a wide range of capacities ranging from a few watts to several kilowatts. In the first instance, the design of a system requires the characteristics of the adsorbate-adsorbent pair. Invariably, the void volume in the adsorbent reduces the throughput of the thermal compressor in a manner similar to the clearance volume in a reciprocating compressor. This paper presents a study of the activated carbon +HFC-134a (1,1,1,2-tetrafluoroethane) system as a possible pair for a typical refrigeration application. The aim of this study is to unfold the nexus between the adsorption parameters, achievable packing densities of charcoal and throughput of a thermal compressor. It is shown that for a thermal compressor, the adsorbent should not only have a high surface area, but should also be able to provide a high packing density. Given the adsorption characteristics of an adsorbent-adsorbate pair and the operating conditions, this paper discloses a method for the calculation of the minimum packing density necessary for an effective throughput of a thermal compressor. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, a wind energy conversion system (WECS) using grid-connected wound rotor induction machine controlled from the rotor side is compared with both fixed speed and variable speed systems using cage rotor induction machine. The comparison is done on the basis of (I) major hardware components required, (II) operating region, and (III) energy output due to a defined wind function using the characteristics of a practical wind turbine. Although a fixed speed system is more simple and reliable, it severely limits the energy output of a wind turbine. In case of variable speed systems, comparison shows that using a wound rotor induction machine of similar rating can significantly enhance energy capture. This comes about due to the ability to operate with rated torque even at supersynchronous speeds; power is then generated out of the rotor as well as the stator. Moreover, with rotor side control, the voltage rating of the power devices and dc bus capacitor bank is reduced. The size of the line side inductor also decreasesd. Results are presented to show the substantial advantages of the doubly fed system.
Resumo:
The structure of a type I langbeinite, Rb2Cd2(SO4)(3), displays three different phases, cubic with a = 10.378(5) Angstrom (space group P2(1)3) at room temperature, monoclinic at 120 K with a = 10.328(3), b = 10.322(3), c = 10.325(3) Angstrom, beta = 89.975(1)degrees (space group P2(1)), and orthorhombic at 85 K with a = 10.319(2), b = 10.321(2), c = 10.320(2) Angstrom (space group P2(1)2(1)2(1)), respectively. Precise single-crystal analyses of these phases indicate that Rb2Cd2(SO4)(3) distorts initially from cubic to monoclinic upon cooling followed by a significant reorientation of the SO4 tetrahedra, resulting in an orthorhombic symmetry upon further cooling. The three structures have been established unequivocally using the same crystal. There is no indication of the formation of an intermediate triclinic phase or any lattice disorder as conjectured in several earlier reports on compounds belonging to the type I langbeinite. The bond valence sum analyses of the coordination around the Rb sites indicate asymmetry in the bond strengths which could be the driving force of the ferroelectric behavior in these materials.
Resumo:
Unintentionally doped homoepitaxial InSb films have been grown by liquid phase epitaxy employing ramp cooling and step cooling growth modes. The effect of growth temperature, degree of supercooling and growth duration on the surface morphology and crystallinity were investigated. The major surface features of the grown film like terracing, inclusions, meniscus lines, etc are presented step-by-step and a variety of methods devised to overcome such undesirable features are described in sufficient detail. The optimization of growth parameters have led to the growth of smooth and continuous films. From the detailed morphological, X-ray diffraction, scanning electron microscopic and Raman studies, a correlation between the surface morphology and crystallinity has been established.