150 resultados para UNGUENTO (R) spray


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomization is the process of disintegration of a liquid jet into ligaments and subsequently into smaller droplets. A liquid jet injected from a circular orifice into cross flow of air undergoes atomization primarily due to the interaction of the two phases rather than an intrinsic break up. Direct numerical simulation of this process resolving the finest droplets is computationally very expensive and impractical. In the present study, we resort to multiscale modelling to reduce the computational cost. The primary break up of the liquid jet is simulated using Gerris, an open source code, which employs Volume-of-Fluid (VOF) algorithm. The smallest droplets formed during primary atomization are modeled as Lagrangian particles. This one-way coupling approach is validated with the help of the simple test case of tracking a particle in a Taylor-Green vortex. The temporal evolution of the liquid jet forming the spray is captured and the flattening of the cylindrical liquid column prior to breakup is observed. The size distribution of the resultant droplets is presented at different distances downstream from the location of injection and their spatial evolution is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strategy for achieving enantiodivergency from R-(-)-carvone in the context of synthesis of eudesmanes and dihydroagarofurans is disclosed, which involves, among other things, sequential setting of the C10 quaternary centre and recreation of the desired C7 isopropyl stereochemistry to enter the antipodal series. A synthesis of 1-deacetoxy-ent-orbiculin has been achieved as a demonstration of the effectiveness and applicability of this approach. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a general theory of Markov chains realizable as random walks on R-trivial monoids. It provides explicit and simple formulas for the eigenvalues of the transition matrix, for multiplicities of the eigenvalues via Mobius inversion along a lattice, a condition for diagonalizability of the transition matrix and some techniques for bounding the mixing time. In addition, we discuss several examples, such as Toom-Tsetlin models, an exchange walk for finite Coxeter groups, as well as examples previously studied by the authors, such as nonabelian sandpile models and the promotion Markov chain on posets. Many of these examples can be viewed as random walks on quotients of free tree monoids, a new class of monoids whose combinatorics we develop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the experience of the new design of using impinging jet spray columns for scrubbing hydrogen sulfide from biogas that has been developed by Indian Institute of Science and patented. The process uses a chelated polyvalent metal ion which oxidizes the hydrogen sulfide to sulfur as a precipitate. The sulfur generated is filtered and the scrubbing liquid recycled after oxidation. The process involves in bringing contact the sour gas with chelated liquid in the spray columns where H2S reacts with chelated Fe3+ and precipitates as sulfur, whereas Fe3+ gets reduced to Fe2+. Fe2+ is regenerated to Fe3+ by reaction of oxygen in air in a separate packed column. The regenerated liquid is recirculated. Sulfur is filtered and separated as a byproduct. The paper presents the experience in using the spray towers for hydrogen sulfide removal and further use of the clean gas for generating power using gas engines. The maximum allowable limit of H2S for the gas engine is 200 ppm (v/v) in order to prevent any corrosion of engine parts and fouling of the lubricating oil. With the current ISET process, the hydrogen sulfide from the biogas is cleaned to less than 100 ppm (v/v) and the sweet gas is used for power generation. The system is designed for 550 NM3/hr of biogas and inlet H2S concentration of 2.5 %. The inlet concentration of the H2S is about 1 - 1.5 % and average measured outlet concentration is about 30 ppm, with an average gas flow of about 300 - 350 NM3/hr, which is the current gas production rate. The sweet gas is used for power generation in a 1.2 MWe V 12 engine. The average power generation is about 650 - 750 kWe, which is the captive load of the industry. The plant is a CHP (combined heat power) unit with heat from the cylinder cooling and flue being recovered for hot water and steam generation respectively. The specific fuel consumption is 2.29 kWh/m(3) of gas. The system has been in operation for more than 13,000 hours in last one year in the industry. About 8.4 million units of electricity has been generated scrubbing about 2.1 million m3 of gas. Performance of the scrubber and the engine is discussed at daily performance level and also the overall performance with an environment sustenance by precipitating over 27 tons of sulfur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atomization characteristics of aviation biofuel discharging from a simplex swirl atomizer into quiescent atmospheric air are studied. The aviation biofuel is a mixture of 90% commercially available camelina-derived biofuel and 10% VonSol-53 (aromatics). The experiments are conducted in a spray test facility at varying fuel flow rate conditions. The measured characteristics include atomizer flow number, spray cone angle, breakup length of liquid sheet, wavelength of undulations on liquid sheet, and spray droplet size. The characteristics of biofuel sheet breakup are deduced from the captured images of biofuel spray. The measurements of spray droplet size distribution are obtained using Spraytec. The experimentally measured characteristics of the biofuel sheet breakup are compared with the predictions obtained from the liquid film breakup model proposed by Senecal et al. (1999). The measurements of wavelength and breakup length of the biofuel sheet discharging from the simplex swirl atomizer agree well with the model predictions. The model-predicted droplet size for the biofuel spray is significantly higher than the experimentally measured Sauter mean diameter (SMD). The spray droplets formed from the liquid sheet breakup undergo secondary atomization until 35-45 mm from the atomizer exit and thereafter the SMD increases downstream due to the combined effect of fuel evaporation and droplet coalescence. A good comparison is observed between the experimentally measured SMD of the biofuel spray and the predictions obtained using the empirical correlation reported in literature for sprays discharging from simplex swirl atomizers. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a localization system that targets rapid deployment of stationary wireless sensor networks (WSN). The system uses a particle filter to fuse measurements from multiple localization modalities, such as RF ranging, neighbor information or maps, to obtain position estimations with higher accuracy than that of the individual modalities. The system isolates different modalities into separate components which can be included or excluded independently to tailor the system to a specific scenario. We show that position estimations can be improved with our system by combining multiple modalities. We evaluate the performance of the system in both an indoor and outdoor environment using combinations of five different modalities. Using two anchor nodes as reference points and combining all five modalities, we obtain RMS (Root Mean Square) estimation errors of approximately 2.5m in both cases, while using the components individually results in errors within the range of 3.5 and 9 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atomization characteristics of blends of bioderived camelina hydrogenated renewable jet (HRJ) alternative fuel with conventional aviation kerosene (Jet A-1) discharging into ambient atmospheric air from a dual-orifice atomizer used in aircraft engines are described. The spray tests are conducted in a spray test facility at six different test flow conditions to compare the atomization of alternative fuels with that of Jet A-1. The fuel sprays are characterized in terms of fuel discharge, spray cone angle, drop size distribution, and spray patternation. The measurements of spray drop size distribution are obtained using laser diffraction based Spraytec equipment. The characteristics of fuel discharge and cone angle of alternative fuel sprays do not show any changes from that of Jet A-1 sprays. The characteristics of spray drop size, evaluated in terms of the variation of mean drop size along the spray axis, for the alternative fuel sprays remain unaffected by the variation in fuel properties between the alternative fuels and Jet A-1. The measurements on spray patternation, obtained using a mechanical patternator at a distance 5.1 cm from the atomizer exit, show an enhanced fuel concentration in the vicinity of spray axis region for the alternative fuel sprays discharging from the dual-orifice atomizer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pressure-swirl nozzles (simplex nozzles) are used in various field applications such as aero-engines, power generation, spray painting and agricultural irrigation. For this particular nozzle, research in the past decade has dealt with the development of numerical models for predicting droplet distribution profiles. Although these results have been valuable, the experimental results have been contradictory, therefore fundamental understanding of the influence of properties in nozzle is important. This paper experimentally investigates the effect of surfactants on breakup and coalescence. Since most of the fuels and biofuels have low surface tension compared to water, a comparative analysis between a surfactant solution and a liquid fuel is imperative. For this experimental study, a simplex nozzle characterized as flow number 0.4 will be utilized. The injection pressures will range from 0.3 - 4Mpa while altering the surface tension from 72 to 28mN/m. By applying Phase Doppler Particle Anemometry (PDPA) which is a non-intrusive laser diagnostic technique, the differences in spray characteristics due to spray surface tension can be highlighted. The average droplet diameter decreases for a low surface tension fluid in the axial direction in comparison to pure water. The average velocity of droplets is surprisingly lower in the same spray zone. Measurements made in the radial direction show no significant changes, but at the locations close to the nozzle, water droplets have larger diameter and velocity. The results indicate the breakup and coalescence regimes have been altered when surface tension is lowered. A decrease in surface tension alters the breakup length while increasing the spray angle. Moreover, higher injection pressure shortens the breakup length and decrease in overall diameter of the droplets. By performing this experimental study the fundamentals of spray dynamics, such as spray formation, liquid breakup length, and droplet breakup regimes can be observed as a function of surface tension and how a surrogate fuel compares with a real fuel for experimental purposes. This knowledge potentially will lead to designing a better atomizer or new biofuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the direct correspondence between Co band ferromagnetism and structural parameters in the pnictide oxides RCoPO for different rare-earth ions (R = La, Pr, Nd, Sm) by means of muon-spin spectroscopy and ab initio calculations, complementing our results published previously G. Prando et al., Common effect of chemical and external pressures on the magnetic properties of RCoPO (R = La, Pr), Phys. Rev. B 87, 064401 (2013)]. We find that both the transition temperature to the ferromagnetic phase T-C and the volume of the crystallographic unit cell V are conveniently tuned by the R ionic radius and/or external pressure. We report a linear correlation between T-C and V and our ab initio calculations unambiguously demonstrate a full equivalence of chemical and external pressures. As such, we show that R ions influence the ferromagnetic phase only via the induced structural shrinkage without involving any active role from the electronic f degrees of freedom, which are only giving a sizable magnetic contribution at much lower temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modular chiral I3-organochalcogeno amines, ArYCH2CH(R)NH2 (4a-4g) where R = Me, Bz, Ph; and ArY = PhS, BzSe and 4-MeOC6H4Te respectively have been synthesized and characterized. Compounds 4a-4g were synthesized (Method II) from chiral aminoalkyl 13-methanesulfonate hydrochlorides, MsOCH2CH(R)NH3+ center dot Cl- (2a-2c) through nucleophilic displacement of MsO- with organochalcogenolate (ArY-). In another attempt (Method I) chiral beta-organotelluro amines (4a-4c) were prepared by deprotection of chiral N-boc I3-organotelluro amides, 4-MeOC6H4TeCH2CH(R)NH-Boc (3a-3c), which in turn, 13,-,1 were made from chiral N-boc 13-methanesulfonate amides (la-lc) and ArTeNa. 1H, and FTIR spectra of all the compounds (3a-3c and 4a-4g) were characteristic. The composition of 3a-3c was determined by elemental analysis. The a]TD values of 3b-3c and 4a-4g were determined. The single crystal structures of (S)-2b and (R)-2c were determined by X-Ray diffraction studies. Both (S)-2b and (R)2c were crystallized in orthorhombic system and the Flack parameter x was found 0.08(12) and 0.00(2) respectively. The crystal of (S)-2b contain two asymmetric units with gauche (A) and staggered (B) conformations. There are NH Cl-, NH-O and CH-O intra and intermolecular secondary interactions in (S)-2b and (R)-2c resulting in supramolecular structures. (C) 2015 Elsevier By. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports numerical investigation concerning the interaction of a laminar methane-air counterflow diffusion flame with monodisperse and polydisperse water spray. Commercial code ANSYS FLUENT with reduced chemistry has been used for investigation. Effects of strain rate, Sauter mean diameter (SMD), and droplet size distribution on the temperature along stagnation streamline have been studied. Flame extinction using polydisperse water spray has also been explored. Comparison of monodisperse and polydisperse droplet distribution on flame properties reveals suitability of polydisperse spray in flame temperature reduction beyond a particular SMD. This study also provides a numerical framework to study flame-spray interaction and extinction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An automated ultrasonic spray pyrolysis system is fabricated for the growth of thin films. The system is equipped with x-y movement and enables film deposition in different patterns and spray rates. Cu-2(Zn,Sn)S-4 (CZTS) films are deposited using this setup. The substrate temperature (T-s) is varied from 240 to 490 degrees C. Kesterite CZTS phase is observed in all the films together with binary phases. The films prepared at T-s <340 degrees C showed SnxSy phase and those at T-s >340 degrees C showed Cu2S phase. Sulfur incorporation is maximum (40%) at 440 degrees C and the films showed better morphology. The Cu and S concentrations are varied to remove binary phases. Depth wise elemental analysis confirmed the existence of single phase CZTS. p-Type CZTS films of resistivity in the range of 10(2)-10(3) Omega cm are obtained. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unique strategy was adopted to achieve an ultra-low electrical percolation threshold of multiwall carbon nanotubes (MWNTs) (0.25 wt%) in a classical partially miscible blend of poly-alpha-methylstyrene-co-acrylonitrile and poly(methyl methacrylate) (P alpha MSAN/PMMA), with a lower critical solution temperature. The polymer blend nanocomposite was prepared by standard melt-mixing followed by annealing above the phase separation temperature. In a two-step mixing protocol, MWNTs were initially melt-mixed with a random PS-r-PMMA copolymer and subsequently diluted with 85/15 P alpha MSAN/PMMA blends in the next mixing step. Mediated by the PS-r-PMMA, the MWNTs were mostly localized at the interface and bridged the PMMA droplets. This strategy led to enhanced electromagnetic interference (EMI) shielding effectiveness at 0.25 wt% MWNTs through multiple scattering from MWNT-covered droplets, as compared to the blends without the copolymer, which were transparent to electromagnetic radiation.