342 resultados para Tuchengzi Formation
Resumo:
The phenomenological theory of hemispherical growth in the context of phase formation with more than one component is presented. The model discusses in a unified manner both instantaneous and progressive nucleation (at the substrate) as well as arbitrary growth rates (e.g. constant and diffusion controlled growth rates). A generalized version of Avrami ansatz (a mean field description) is used to tackle the ''overlap'' aspects arising from the growing multicentres of the many components involved, observing that the nucleation is confined to the substrate plane only. The time evolution of the total extent of macrogrowth as well as those of the individual components are discussed explicitly for the case of two phases. The asymptotic expressions for macrogrowth are derived. Such analysis depicts a saturation limit (i.e. the maximum extent of growth possible) for the slower growing component and its dependence on the kinetic parameters which, in the electrochemical context, can be controlled through potential. The significance of this model in the context of multicomponent alloy deposition and possible future directions for further development are pointed out.
Resumo:
There has been revival of interest in Jerky flow from the point of view of dynamical systems. The earliest attempt in this direction was from our group. One of the predictions of the theory is that Jerky flow could be chaotic. This has been recently verified by us. We have recently extended the earlier model to account for the spatial aspect as well. Both these models are in the form of coupled set of nonlinear differential equations and hence, they are complicated in their structure. For this reason we wish to devise a model based on the results of these two theories in the form of coupled lattice map for the description of the formation and propagation of dislocation bands. We report here one such model and its results.
Resumo:
Solid-state irradiation of cyclodextrin complexes of alpha,alpha-dimethyldeoxybenzoin results in the formation of a significant amount of rearrangement product, 4-isopropylbenzophenone, in addition to cage products. This behavior is not observed in the photolysis in solution or in micellar media.
Resumo:
The Gibbs free energy of formation of the orthorhombic form of CaZrO3(o) from monoclinic ZrO2(m) and periclase CaO(p) has been determined as a function of temperature in the range 950-1225 K, using an electrochemical cell incorporating single-crystal CaF2 as the solid electrolyte. The results are corrected for the small solid solubility of CaO in ZrO2. For the reaction, ZrO2(m) + CaO(p) --> CaZrO3(o), DELTAG(phi) = -31590 -13.9T(+/- 180) J mol-1. The ''second-law'' enthalpy of formation of CaZrO3 obtained from the results of this study at a mean temperature of 1090 K is in excellent agreement with the high-temperature solution calorimetric measurements of Muromachi and Navrotsky at 1068 K (J. Solid State Chem., 72 (1988) 244), and the average value of the bomb and acid solution calorimetric studies of Lvova and Feodosev (Zh. Fiz. Khim., 38 (1964) 28), Korneev et al. (Izv. Akad. Nauk SSSR, Neorg. Mater., 7 (1971) 886) and Brown and Bennington (Thermochim. Acta, 106 (1986) 183). The standard entropy of CaZrO3(o) at 298.15 K from the free energy data is 96.4 (+/- 3.5) J K-1 mol-1. The results of this study are discussed in comparison with high-temperture e.m.f. measurements reported in the literature on cubic zirconia solid solutions.
Resumo:
High-temperature reactions (Ca 900-degrees-C) involving albite, K-feldspar or plagioclase and K, Ba-or K, Sr chlorides were experimentally studied. These experiments reveal that the reaction between K-exchanged albite, potash feldspar, or plagioclase and Ba-chloride/Ba-K chloride results in the formation of celsian by the breakdown of the starting feldspar structure above 800-degrees-C. Sr-feldspar does not form under similar conditions. A size-effect of the large M-site cation appears to be responsible for the formation of celsian. The reaction between K-feldspar and barium chloride may be used as a method for synthesizing celsian.
Resumo:
A team of unmanned aerial vehicles (UAVs) with limited communication ranges and limited resources are deployed in a region to search and destroy stationary and moving targets. When a UAV detects a target, depending on the target resource requirement, it is tasked to form a coalition over the dynamic network formed by the UAVs. In this paper, we develop a mechanism to find potential coalition members over the network using principles from internet protocol and introduce an algorithm using Particle Swarm Optimization to generate a coalition that destroys the target is minimum time. Monte-Carlo simulations are carried out to study how coalition are formed and the effects of coalition process delays.
Resumo:
Reactions of hexachlorocyclodiphosphazane [MeNPCl3]2 with primary aromatic amines afforded the bisphosphinimine hydrochlorides [(RNH)2(RN)PN(Me)P(NHMe)(NHR)2]+Cl- (R = Ph 1, C6H4Me-4 2 or C6H4OMe-4 3). Dehydrochlorination of 2 and 3 by methanolic KOH yielded highly basic bisphosphinimines [(RNH)2(RN)PN(Me)P(NMe)(NHR)2] (R = C6H4Me-4 4 or C6H4OMe-4 5). Compounds 1-5 have been characterised by elemental analysis and IR and NMR (H-1, C-13, P-31) spectroscopy. The structure of 2 has been confirmed by single-crystal X-ray diffraction. The short P-N bond lengths and the conformations of the PN, units can be explained on the basis of cumulative negative hyperconjugative interactions between nitrogen lone pairs and adjacent P-N sigma* orbitals. Ab initio calculations on the model phosphinimine (H2N)3P=NH and its protonated form suggest that (amino)phosphinimines would be stronger bases compared to many organic bases such as guanidine.
Resumo:
Arylvinamidines (2-, 3- or 4-aryl-4-(N,N-dimethyl)amino-1-azabuta-1,3-dienes), generated from 1,1,5,5-tetramethyl-2- or -3-phenyl-1,5-diazapentadienium salts, cyclocondense orientation-specifically under two regioselections forming 1-4' + 4-3' and 1-2' + 4-1' bonds on exposure to ammonia. The initial cyclates aromatise eliminatively to give mixtures of diarylpyridines and arylpyrimidines. The 2-arylvinamidines do not participate as 2-centre reactants and their 4-aryl isomers not as 4-centre reactants in the cyclocondensations which appear to be stepwise and not concerted. Reasons for the selective participation appear to be that the required eliminations from the initial cyclates are disfavoured in the first case and that a geometric factor prevents cyclate-formation in the second.
Resumo:
Star formation properties in Giant Extragalactic H II Regions (GEHRs) are investigated using optical photometry and evolutionary population synthesis models. Photometric data in $BVR$ bands and in the emission line of H-alpha are obtained by CCD imaging at Vainu Bappu Observatory, Kavalur. Aperture photometry is performed for 180 GEHRs in galaxies NGC 1365, 1566, 2366, 2903, 2997, 3351, 4303, 4449, 4656 and 5253. Thirty six of these GEHRs having published spectroscopic data are studied for star formation properties. The population synthesis model is constructed based on Maeder's stellar evolutionary and Kurucz stellar atmosphere models, to synthesize observational quantities of embedded clusters in GEHRs. The observed H-alpha luminosity is a measure of the number of massive stars while the contribution to BVR bands is from intermediate mass (5-15 solar mass) stars when the cluster is young and from evolving supergiants when the cluster is old (age >/= 6~Myr). Differential reddening between gas and embedded stars is essential to constrain the dereddened cluster colors within the range of youngest clusters. Obscuring dust closely associated with gas, which is distributed in filaments and clumps, as in the case of 30 Doradus, is the most likely configuration giving rise to net reduction of extinction towards stars. The fraction of the stellar photons escaping the nebula unattenuated is estimated to be 50%. GEHRs are rarely found to be simple systems containing stars from single generation. In the present sample such regions in addition to being older than 3~Myr, have their Lyman continuum luminosity reduced by as much as 60%, compared to the observed $B$ band luminosity for a normal IMF. The missing ionizing photons may be escaping the nebula, leading to the ionization of extra-H II region ionized medium. Co-existence of young (age = 5 Myr; stars producing ionizing photons) and old populations (~10~Myr; Red Supergiants) is found to be common in GEHRs. The emission and continuum knots are seen spatially separated (40-100 pc) on CCD images in NGC 2997, 4303 and 4449 and may be direct evidences for the co-existence of young and old populations in giant star forming complexes. Triggering of star formation from earlier bursts is the most likely cause of new generation of stars, and may be a common phenomenon in GEHRs. Spatial separation between the young and old stars (~30 pc) had been earlier reported in 30 Doradus. Thus GEHRs in nearby galaxies share many of the properties shown by 30 Dor, the nearest GEHR. (SECTION: Dissertation Summaries)
Resumo:
Anion-deficient layered perovskite oxides of the formula, ACa2Nb3-xMxO10-x (A = Rb, Cs; M = Al, Fe) for 0 < x less-than-or-equal-to 1.0, possessing tetragonal structures similar to the parent ACa2Nb3O10, have been synthesized. The interlayer A cations in these materials are readily exchanged with protons in aqueous HNO3 to give the protonated derivatives, HCa2Nb3-xMxO10-x; the latter are solid Bronsted acids intercalating a number of organic amines including aniline (pK(a) = 4.63). The distribution of acid sites in the interlayer region of HCa2Nb2MO9 inferred from n-alkylamine intercalation suggests that oxygen vacancies and Nb/M atoms are disordered in the ACa2Nb2MO9 samples prepared at 1100-1200-degrees-C. Annealing a disordered sample of CsCa2Nb2AlO9 for a long time at lower temperatures tends to order the Nb/Al atoms and oxygen vacancies to produce octahedral (NbO6/2)-tetrahedral (AlO4/2)-octahedral (NbO6/2) layer sequence reminiscent of the brownmillerite structure.
Resumo:
A cDNA clone isolated by differentially screening a cytokinin-induced haustorial cDNA library of Cuscuta reflexa was sequenced and identified as the gene coding for cytochrome b(5), based on the similarity of the deduced amino-acid sequence with that of the cauliflower (60% identity) and tobacco (78% identity) proteins. The 5'-UTR is unusually long (720 bp) and contains 14 potential start codons (ATG) and 10 short ORFs.
Resumo:
The synthesis, properties and crystal structure of the cage complex (1-hydroxy-8-methyl-3,6,10,13,15,18-hexaazabicyclo[6.6.5]nonadecane)cobalt(III) chloride hydrate ([Co(Me,OH-absar)] C13.H2O) are reported. The mechanism of the formation of this contracted cavity cage from a nitro-capped hexaazabicycloicosane type cage has been investigated. Treatment of (1-methyl-8-nitro-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane)cobalt(III) chloride ([Co(Me,NO2-sar)] 3+) with excess base in aqueous solution leads initially to rapid (t1/2 < 1 ms) and reversible deprotonation of one coordinated secondary amine. This species undergoes a retro-Mannich type reaction and imine hydrolysis (t1/2 almost-equal-to 90 s). Quenching the reaction with acid gives rise to a pair of isomeric intermediate species which have been isolated and characterized. They have a pendant arm macrocyclic structure, resulting from the loss of a methylene unit from one of the arms of the cap. Heating either isomer in aqueous solution gives the new cage compound with the contracted cap. It is postulated that this occurs through a Nef reaction, resulting in the formation of a ketone which then condenses with the coordinated primary amine. A comparison with the corresponding bicycloicosane analogue indicates a reduced chromophoric cavity size for the contracted cage. The reduction potential of the cobalt(III)/cobalt(II) couple is 170 mV more negative for the smaller cage, and, in the electronic spectrum of the cobalt(III) complex, the d-d transitions are both shifted to higher energy, corresponding to a stronger ligand field.
Resumo:
Three independent studies have been reported on the free energy of formation of NiWO4. Results of these measurements are analyzed by the �third-law� method, using thermal functions for NiWO4 derived from both low and high temperature heat capacity measurements. Values for the standard molar enthalpy of formation of NiWO4 at 298·15 K obtained from �third-law� analysis are compared with direct calorimetric determinations. Only one set of free energy measurements is found to be compatible with calorimetric enthalpies of formation. The selected value for ?f H m 0 (NiWO4, cr, 298·15 K) is the average of the three calorimetric measurements, using both high temperature solution and combustion techniques, and the compatible free energy determination. A new set of evaluated data for NiWO4 is presented.
Resumo:
An energy landscape view of phase separation and nonideality in binary mixtures is developed by exploring their potential energy landscape (PEL) as functions of temperature and composition. We employ molecular dynamics simulations to study a model that promotes structure breaking in the solute-solvent parent binary liquid, at low temperatures. The PEL of the system captures the potential energy distribution of the inherent structures (IS) of the system and is obtained by removing the kinetic energy (including that of intermolecular vibrations). The broader distribution of the inherent structure energy for structure breaking liquid than that of the structure making liquid demonstrates the larger role of entropy in stabilizing the parent liquid of the structure breaking type of binary mixtures. At high temperature, although the parent structure of the structure breaking binary mixture is homogenous, the corresponding inherent structure is found to be always phase separated, with a density pattern that exhibits marked correlation with the energy of its inherent structure. Over a broad range of intermediate inherent structure energy, bicontinuous phase separation prevails with interpenetrating stripes as signatures of spinodal decomposition. At low inherent structure energy, the structure is largely phase separated with one interface where as at high inherent structure energy we find nucleation type growth. Interestingly, at low temperature, the average inherent structure energy (< EIS >) exhibits a drop with temperature which signals the onset of crystallization in one of the phases while the other remains in the liquid state. The nonideal composition dependence of viscosity is anticorrelated with average inherent structure energy.