139 resultados para Spontaneous Combustion
Resumo:
Gadolinium oxide, cerium oxide, and 10 mol% gadolinia doped ceria ceramic powders have been synthesized using combustion technique. Though the cubic gadolinia phase is stable at room temperature, single phase monoclinic gadolinia was obtained as a result of combustion synthesis using fuel lean and stoichiometric precursor compositions. This powder was subjected to calcination treatment and ceria doping to study the stability of phases and the rate of phase transformation from monoclinic to cubic gadolinia. It was found that monoclinic gadolinia transforms to cubic gadolinia upon calcination at temperatures less than 1200 degrees C. It was also found that rate of phase transformation is more for powder produced using fuel lean compositions; and the rate is enhanced upon ceria doping. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
There has been much interest in understanding collective dynamics in networks of brain regions due to their role in behavior and cognitive function. Here we show that a simple, homogeneous system of densely connected oscillators, representing the aggregate activity of local brain regions, can exhibit a rich variety of dynamical patterns emerging via spontaneous breaking of permutation or translational symmetries. Upon removing just a few connections, we observe a striking departure from the mean-field limit in terms of the collective dynamics, which implies that the sparsity of these networks may have very important consequences. Our results suggest that the origins of some of the complicated activity patterns seen in the brain may be understood even with simple connection topologies.
Resumo:
With the pressing need to meet an ever-increasing energy demand, the combustion systems utilizing fossil fuels have been the major contributors to carbon footprint. As the combustion of conventional energy resources continue to produce significant Green House gas (GHG) emissions, there is a strong emphasis to either upgrade or find an energy-efficient eco-friendly alternative to the traditional hydrocarbon fuels. With recent developments in nanotechnology, the ability to manufacture materials with custom tailored properties at nanoscale has led to the discovery of a new class of high energy density fuels containing reactive metallic nanoparticles (NPs). Due to the high reactive interfacial area and enhanced thermal and mass transport properties of nanomaterials, the high heat of formation of these metallic fuels can now be released rapidly, thereby saving on specific fuel consumption and hence reducing GHG emissions. In order to examine the efficacy of nanofuels in energetic formulations, it is imperative to first study their combustion characteristics at the droplet scale that form the fundamental building block for any combustion system utilizing liquid fuel spray. During combustion of such multiphase, multicomponent droplets, the phenomenon of diffusional entrapment of high volatility species leads to its explosive boiling (at the superheat limit) thereby leading to an intense internal pressure build-up. This pressure upsurge causes droplet fragmentation either in form of a microexplosion or droplet puffing followed by atomization (with formation of daughter droplets) featuring disruptive burning. Both these atomization modes represent primary mechanisms for extracting the high oxidation energies of metal NP additives by exposing them to the droplet flame (with daughter droplets acting as carriers of NPs). Atomization also serves as a natural mechanism for uniform distribution and mixing of the base fuel and enhancing burning rates (due to increase in specific surface area through formation of smaller daughter droplets). However, the efficiency of atomization depends on the thermo-physical properties of the base fuel, NP concentration and type. For instance, at dense loading NP agglomeration may lead to shell formation which would sustain the pressure upsurge and hence suppress atomization thereby reducing droplet gasification rate. Contrarily, the NPs may act as nucleation sites and aid boiling and the radiation absorption by NPs (from the flame) may lead to enhanced burning rates. Thus, nanoadditives may have opposing effects on the burning rate depending on the relative dominance of processes occurring at the droplet scale. The fundamental idea in this study is to: First, review different thermo-physical processes that occur globally at the droplet and sub-droplet scale such as surface regression, shell formation due to NP agglomeration, internal boiling, atomization/NP transport to flame zone and flame acoustic interaction that occur at the droplet scale and second, understand how their interaction changes as a function of droplet size, NP type, NP concentration and the type of base fuel. This understanding is crucial for obtaining phenomenological insights on the combustion behavior of novel nanofluid fuels that show great promise for becoming the next-generation fuels. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Combustion synthesized (CS) cobalt catalysts deposited over two supports, alumina and silica doped alumina (SDA), were characterized and tested for its Fischer-Tropsch (FT) activity. The properties of CS catalysts were compared to catalysts synthesized by conventional impregnation method (IWI). The CS catalysts resulted in 40-70% increase in the yield of C6+ hydrocarbons compared to MI catalysts. The FT activity for CS catalysts showed formation of long chain hydrocarbon waxes (C24+) compared to the formation of middle distillates (C-10-C-20) for IWI synthesized catalysts, indicating higher hydrocarbon chain growth probability for CS catalysts. This is ascribed to the smaller crystallite sizes, increased degree of cobalt reduction and consequentially, a higher number of active metal sites, exposed over the catalyst surface. Additionally, 12-13% increase in the overall C6+ hydrocarbon yield is realized for SDA-CS catalysts, compared to Al2O3-CS catalysts. The improved performance of CS-SDA catalysts is attributed to 48% increase in cobalt dispersion compared to Al2O3 supported CS catalysts, which is again caused by the decrease in the cobalt -support interaction for SDA supports. The metal support interactions were analyzed using XPS and H-2 TPR-TPD experiments. Combustion method produced catalysts with smaller crystallite size (17-18 nm), higher degree of reduction (similar to 92%) and higher metal dispersion (16.1%) compared to the IWI method. Despite its enhanced properties, the CS catalysts require prominently higher reduction temperatures (similar to 1100-1200 K). The hydrocarbon product analysis for Al2O3 supported catalyst showed higher paraffin wax concentrations compared to SDA supported catalysts, due to the lower surface basicity of Al2O3. This work reveals the impact of the CS catalysts and the nature of support on FT activity and hydrocarbon product spectrum. (C) 2016 Elsevier Ltd. All rights reserved.