213 resultados para Spin multiplicity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a spin model, namely, the Kitaev model augmented by a loop term and perturbed by an Ising Hamiltonian, and show that it exhibits both confinement-deconfinement transitions from spin liquid to antiferromagnetic/spin-chain/ferromagnetic phases and topological quantum phase transitions between gapped and gapless spin-liquid phases. We develop a fermionic resonating-valence-bonds (RVB) mean-field theory to chart out the phase diagram of the model and estimate the stability of its spin-liquid phases, which might be relevant for attempts to realize the model in optical lattices and other spin systems. We present an analytical mean-field theory to study the confinement-deconfinement transition for large coefficient of the loop term and show that this transition is first order within such mean-field analysis in this limit. We also conjecture that in some other regimes, the confinement-deconfinement transitions in the model, predicted to be first order within the mean-field theory, may become second order via a defect condensation mechanism. Finally, we present a general classification of the perturbations to the Kitaev model on the basis of their effect on it's spin correlation functions and derive a necessary and sufficient condition, within the regime of validity of perturbation theory, for the spin correlators to exhibit a long-ranged power-law behavior in the presence of such perturbations. Our results reproduce those of Tikhonov et al. [Phys. Rev. Lett. 106, 067203 (2011)] as a special case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide a theory for the tunneling conductance G(V) of Dirac electrons on the surface of a topological insulator as measured by a spin-polarized scanning tunneling microscope tip for low-bias voltages V. We show that if the in-plane rotational symmetry on the surface of the topological insulator is broken by an external field that does not couple to spin directly (such as an in-plane electric field), G(V) exhibits an unconventional dependence on the direction of the magnetization of the tip, i.e., it acquires a dependence on the azimuthal angle of the magnetization of the tip. We also show that G(V) can be used to measure the magnitude of the local out-of-plane spin orientation of the Dirac electrons on the surface. We explain the role of the Dirac electrons in this unconventional behavior and suggest experiments to test our theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate a technique for electrical detection of polarized spins in semiconductors in zero applied magnetic fields. Spin polarization is generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by a sensitive radio-frequency coil. Using a calibrated pickup coil and amplification electronics, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of 4.8% could be determined for Ge at 1342 nm excitation wavelength. In the presence of a small external magnetic field, the signal decayed according to the Hanle effect, from which a spin lifetime of 4.6 +/- 1.0 ns for electrons in bulk Ge at 127 K was extracted.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of static electron-phonon coupling on real-time dynamics of spin and charge transport in pi-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter t(0)(1 + delta) for short bonds and t(0)(1 - delta) for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent density matrix renormalization group technique when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities depend both on chain length and extent of dimerization delta. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 <= delta <= 0.15, spin-charge dynamics is found to have a well-defined behavior, with spin-charge separation (measured as the ratio of charge velocity to spin velocity) as well as the total amount of charge and spin transported in a given time along the chain decreasing as dimerization increases. However, in the range 0.3 <= delta <= 0.5, it is observed that the dynamics of spin and charge transport becomes complicated. It is observed that, for large delta values, spin-charge separation is suppressed and the injected hole fails to travel the entire length of the chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Griffiths phase-like features and the spin-phonon coupling effects observed in Tb(2)NiMnO(6) are reported. The double perovskite compound crystallizes in monoclinic P2(1)/n space group and exhibits a magnetic phase transition at T(c) similar to 111 K as an abrupt change in magnetization. A negative deviation from ideal Curie-Weiss law exhibited by 1/chi(T) curves and less-than-unity susceptibility exponents from the power-law analysis of inverse susceptibility are reminiscent of Griffiths phase-like features. Arrott plots derived from magnetization isotherms support the inhomogeneous nature of magnetism in this material. The observed effects originate from antiferromagnetic interactions that arise from inherent disorder in the system. Raman scattering experiments display no magnetic-order-induced phonon renormalization below Tc in Tb(2)NiMnO(6), which is different from the results observed in other double perovskites and is correlated to the smaller size of the rare earth. The temperature evolution of full-width-at-half-maximum for the stretching mode at 645 cm(-1) presents an anomaly that coincides with the magnetic transition temperature and signals a close connection between magnetism and lattice in this material. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3671674]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the long standing problems in quantum chemistry had been the inability to exploit full spatial and spin symmetry of an electronic Hamiltonian belonging to a non-Abelian point group. Here, we present a general technique which can utilize all the symmetries of an electronic (magnetic) Hamiltonian to obtain its full eigenvalue spectrum. This is a hybrid method based on Valence Bond basis and the basis of constant z-component of the total spin. This technique is applicable to systems with any point group symmetry and is easy to implement on a computer. We illustrate the power of the method by applying it to a model icosahedral half-filled electronic system. This model spans a huge Hilbert space (dimension 1,778,966) and in the largest non-Abelian point group. The C60 molecule has this symmetry and hence our calculation throw light on the higher energy excited states of the bucky ball. This method can also be utilized to study finite temperature properties of strongly correlated systems within an exact diagonalization approach. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the effect of terminal substituents on the dynamics of spin and charge transport in donor-acceptor substituted polyenes [D-(CH)(x)-A] chains, also known as push-pull polyenes. We employ a long-range correlated model Hamiltonian for the D-(CH)(x)-A system, and time-dependent density matrix renormalization group technique for time propagating the wave packet obtained by injecting a hole at a terminal site, in the ground state of the system. Our studies reveal that the end groups do not affect spin and charge velocities in any significant way, but change the amount of charge transported. We have compared these push-pull systems with donor-acceptor substituted polymethine imine (PMI), D-(CHN)(x)-A, systems in which besides electron affinities, the nature of p(z) orbitals in conjugation also alternate from site to site. We note that spin and charge dynamics in the PMIs are very different from that observed in the case of push-pull polyenes, and within the time scale of our studies, transport of spin and charge leads to the formation of a ``quasi-static'' state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our in situ x-ray diffraction and Raman measurements of Yb2Ti2O7 pyrochlore show that it undergoes a reversible structural phase transition from cubic pyrochlore to a monoclinic phase at similar to 28.6 GPa. Analysis of the x-ray data shows the transition to be thermodynamically first order and the high pressure phase to be substitutionally disordered. These experimental results are supported by our first principles calculations. (C) 2012 American Institute of Physics. [doi:10.1063/1.3681300]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A density matrix renormalization group (DMRG) algorithm is presented for the Bethe lattice with connectivity Z = 3 and antiferromagnetic exchange between nearest-neighbor spins s = 1/2 or 1 sites in successive generations g. The algorithm is accurate for s = 1 sites. The ground states are magnetic with spin S(g) = 2(g)s, staggered magnetization that persists for large g > 20, and short-range spin correlation functions that decrease exponentially. A finite energy gap to S > S(g) leads to a magnetization plateau in the extended lattice. Closely similar DMRG results for s = 1/2 and 1 are interpreted in terms of an analytical three-site model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A remarkable hardening (similar to 30 cm(-1)) of the normal mode of vibration associated with the symmetric stretching of the oxygen octahedra for the Ba2FeReO6 and Sr2CrReO6 double perovskites is observed below the corresponding magnetic ordering temperatures. The very large magnitude of this effect and its absence for the antisymmetric stretching mode provide evidence against a conventional spin-phonon coupling mechanism. Our observations are consistent with a collective excitation formed by the combination of the vibrational mode with oscillations of Fe or Cr 3d and Re 5d occupations and spin magnitudes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anomalous temperature dependence of Raman phonon wavenumbers attributed to phononphonon anharmonic interactions has been studied in two different families of pyrochlore titanates. We bring out the role of the ionic size of titanium and the inherent vacancies of pyrochlore in these anomalies by studying the effect of replacement of Ti4?+ by Zr4?+ in Sm2Ti2O7 and by stuffing Ho3?+ in place of Ti4?+ in Ho2Ti2O7 with appropriate oxygen stoichiometry. Our results show that an increase in the concentration of the larger ion, i.e. Zr4?+ or Ho3?+, reduces the phonon anomalies, thus implying a decrease in the phononphonon anharmonic interactions. In addition, we find signatures of coupling between a phonon and crystal field transition in Sm2Ti2O7, manifested as an unusual increase in the phonon intensity with increasing temperature. Copyright (c) 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We solve the wave equations of arbitrary integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. We show that these quasinormal modes precisely agree with the location of the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We then use these quasinormal modes to construct the one-loop determinant of the higher spin field in the thermal BTZ background. This is shown to agree with that obtained from the corresponding heat kernel constructed recently by group theoretic methods.