499 resultados para Salix X sepulcralis
Resumo:
The study of proteins involved in de novo biosynthesis of purine nucleotides is central in the development of antibiotics and anticancer drugs. In view of this, a protein from the hyperthermophile Pyrococcus horikoshii OT3 was isolated, purified and crystallized using the microbatch method. Its primary structure was found to be similar to that of SAICAR synthetase, which catalyses the seventh step of de novo purine biosynthesis. A diffraction-quality crystal was obtained using Hampton Research Crystal Screen II condition No. 34, consisting of 0.05 M cadmium sulfate hydrate, 0.1 M HEPES buffer pH 7.5 and 1.0 M sodium acetate trihydrate, with 40%(v/v) 1,4-butanediol as an additive. The crystal belonged to space group P3(1), with unit-cell parameters a = b = 95.62, c = 149.13 angstrom. Assuming the presence of a hexamer in the asymmetric unit resulted in a Matthews coefficient (V-M) of 2.3 angstrom(3) Da(-1), corresponding to a solvent content of about 46%. A detailed study of this protein will yield insights into structural stability at high temperatures and should be highly relevant to the development of antibiotics and anticancer drugs targeting the biosynthesis of purine nucleotides.
Resumo:
Triclosan, a well-known inhibitor of Enoyl Acyl Carrier Protein Reductase (ENR) from several pathogenic organisms, is a promising lead compound to design effective drugs. We have solved the X-ray crystal structures of Plasmodium falciparum ENR in complex with triclosan variants having different substituted and unsubstituted groups at different key functional locations. The structures revealed that 4 and 2' substituted compounds have more interactions with the protein, cofactor, and solvents when compared with triclosan. New water molecules were found to interact with some of these inhibitors. Substitution at the 2' position of triclosan caused the relocation of a conserved water molecule, leading to an additional hydrogen bond with the inhibitor. This observation can help in conserved water-based inhibitor design. 2' and 4' unsubstituted compounds showed a movement away from the hydrophobic pocket to compensate for the interactions made by the halogen groups of triclosan. This compound also makes additional interactions with the protein and cofactor which compensate for the lost interactions due to the unsubstitution at 2' and 4'. In cell culture, this inhibitor shows less potency, which indicates that the chlorines at 2' and 4' positions increase the ability of the inhibitor to cross multilayered membranes. This knowledge helps us to modify the different functional groups of triclosan to get more potent inhibitors. (C) 2010 IUBMB IUBMB Life, 62(6): 467-476.
Resumo:
Optically clear glasses of various compositions in the system (100-x)Li2B4O7 center dot x(Ba5Li2Ti2Nb8O30) (5 <= x <= 20, in molar ratio) were fabricated by splat quenching technique. Controlled heat-treatment of the as-quenched glasses at 500 degrees C for 8 h yielded nanocrystallites embedded in the glass matrix. High Resolution Transmission Electron Microscopy (HRTEM) of these samples established the composition of the nano-crystallites to be that of Ba5Li2Ti2Nb8O30. B-11 NMR studies revealed the transformation of BO4 structural units into BO3 units owing to the increase in TiO6 and NbO6 structural units as the composition of Ba5Li2Ti2Nb8O30 increased in the glass. This, in turn, resulted in an increase in the density of the glasses. The influence of the nominal composition of the glasses and glass nanocrystal composites on optical band gap (E-opt), Urbach energy (Delta E), refractive index (n), molar refraction (R-m), optical polarizability (alpha(m)) and third order non-linear optical susceptibility (chi(3)) were studied.
Resumo:
It has been established by photoemission studies that Ge in obliquely deposited pure Ge and Ge-chalcogenide thin films undergoes predominant photooxidation when irradiated with band gap photons. The role of Ge appears to be that of providing a highly porous low density microstructure and photooxidation seems to be a direct consequence of such large scale porosity in these films. The formation of low vapour pressure oxide fractions of Ge and Te and volatile high vapour pressure oxide fractions of S and Se is responsible for anomalous photoinduced transformations in these films.
Resumo:
The r.f. absorption experiment performed on YBa2Cu3O7-x ceramic pellets using a CW NMR spectrometer shows some novel observed in the microwave range.
Resumo:
For p x n complex orthogonal designs in k variables, where p is the number of channels uses and n is the number of transmit antennas, the maximal rate L of the design is asymptotically half as n increases. But, for such maximal rate codes, the decoding delay p increases exponentially. To control the delay, if we put the restriction that p = n, i.e., consider only the square designs, then, the rate decreases exponentially as n increases. This necessitates the study of the maximal rate of the designs with restrictions of the form p = n+1, p = n+2, p = n+3 etc. In this paper, we study the maximal rate of complex orthogonal designs with the restrictions p = n+1 and p = n+2. We derive upper and lower bounds for the maximal rate for p = n+1 and p = n+2. Also for the case of p = n+1, we show that if the orthogonal design admit only the variables, their negatives and multiples of these by root-1 and zeros as the entries of the matrix (other complex linear combinations are not allowed), then the maximal rate always equals the lower bound.
Resumo:
We report x-ray photoelectron spectroscopic investigation of RuSr2Eu1.5Ce0.5Cu2O10 with ferromagnetic T-C similar to 100 K and a superconducting transition temperature of similar to 30 K compared with RuSr2EuCeCu2O10, which is a ferromagnetic (T-C similar to 150 K) insulator. Our results show that the rare earths, Eu and Ce, are in 3+ and 4+ states, respectively. Comparing the Ru core level spectra from these compounds to those from two Ru reference oxides, we also show that Ru in these ruthenocuprates is always in 5+ state, suggesting that the doped holes in the superconducting compound arising from the substitution of Ce4+ by Eu3+ are primarily in the Cu-O plane, in close analogy to all other doped high-T-C cuprates. Analysis of Cu 2p spectra in terms of a configuration interaction model provides a quantitative description of the gross electronic structures of these ruthenocuprates.
Resumo:
Summary form only given. The authors have developed a controllable HTSC (high-temperature superconductor) weak-link fabrication process for producing weak links from the high-temperature superconductor YBa2Cu3O7-x (YBCO), using PrBa2Cu3O7-x (PBCO) as a lattice-matched semiconducting barrier layer. The devices obtained show current-voltage characteristics similar to those observed for low-temperature superconductor/normal-metal/superconductor (SNS) devices. The authors found good scaling of the critical currents Ic with area, A, and scaling of the resistances Rj with 1/A; the typical values of the IcRj product of 3.5 mV are consistent with traditional SNS behavior. The authors observed Shapiro steps in response to 100-GHz millimeter-wave radiation and oscillation of the DC supercurrent in a transverse magnetic field, thus demonstrating that both the AC and DC Josephson effects occur in these devices.
Resumo:
X-ray absorption spectra, X-ray photoelectron spectra and Auger spectra of cuprate superconductors are discussed. The studies establish the absence of Cu3+ for all practical purposes, but point out the importance of oxygen holes. X-ray photoelectron spectra of BaBi0.25Pb0.75O3 and related compounds are also examined.
Resumo:
Photoacoustic (PA) technique is used to study glass transition and temperature dependence of thermal diffusivity in AsxTe1-x glasses with 0.25 0.60. PA amplitude goes through a minimum and the phase shows a maximum at glass transition temperature Tg. The variation of thermal diffusivity with temperature shows sharp decrease near Tg. The variation of thermal diffusivity with composition shows maximum at = 0.40 for all temperatures T Tg.
Resumo:
Magnetic susceptibility measurements on dilute solid-solutions LaNi1-xMnxO3 (x < 0.1) have been carried out. With increasing x the magnetic susceptibility behaviour changes from Pauli paramagnetic to Curie-Weiss type. The temperature coefficient of resistance (TCR) changes sign around x = 0.03 but the system seems to be metallic in terms of showing a finite extrapolated conductivity at 0 K even when x = 0.10. The x = 0.10 system shows indications of spin-glass like behaviour.