143 resultados para SPIRAL WAVES
Resumo:
Incident energy gets transmitted, reflected and absorbed across an interface in jointed rock mass leading to energy dissipation and alteration of waves. Wave velocities get attenuated during their propagation across joints and this behavior is studied using bender/extender element tests. The velocity attenuation and modulus reduction observed in experimental tests are modeled with three dimensional distinct element code and results are validated. Normal propagation of an incident shear wave through a jointed rock mass cause slip of the rock blocks if shear stress of wave exceeds the shear strength of the joint. As the properties of joint determine the transmission of energy across an interface, a parametric study is then conducted with the validated numerical model by varying the parameters that may determine the energy transmission across a joint using modified Miller's method. Results of the parametric study are analyzed and presented in the paper. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This study reports characteristics of inertia-gravity waves (IGWs) in the atmospheric boundary layer during the passage of Tropical Cylone-03B, using the Doppler Sound Detection and Ranging (SODAR) observations at the Indian tropical station of Gadanki (13.45 degrees N, 79.2 degrees E; near the east coast of India). Wavelet analysis of horizontal winds indicates significant wave motion (60h) near the characteristic inertial period. The hodograph analysis of the filtered winds shows an anti-cyclonic turning of horizontal wind with height and time, indicating the presence of IGW. This study finds important implications in boundary layer dynamics during the passage of tropical cyclones.
Resumo:
A new two-step procedure for the synthesis of MoS2 nanotubes using lead as a growth promoter is reported. In the first step, molybdenum suboxide nanowhiskers containing a small amount of lead atoms were created by exposing a pressed MoS2+Pb mixture to highly compressed shock-heated argon gas, with estimated temperatures exceeding 9900 K. In the second step, these molybdenum suboxide nanowhiskers served as templates for the sulfidization of the oxide into MoS2 nanotubes (by using H2S gas in a reducing atmosphere at 820 degrees C). Unlike the case of WS2 nanotubes, the synthesis of a pure phase of MoS2 nanotubes from molybdenum oxide has proven challenging, due mostly to the volatile nature of the latter at the high requisite reaction temperatures (>800 degrees C). In contrast, the nature and apparent reaction mechanism of the method reported herein are amenable to future scale-up. The high-temperature shockwave system should also facilitate the synthesis of new nanostructures from other layered materials.
Resumo:
The surface brightness distribution in the majority of stellar galactic discs falls off exponentially. Often what lies beyond such a stellar disc is the neutral hydrogen gas whose distribution also follows a nearly exponential profile at least for a number of nearby disc galaxies. Both the stars and gas are commonly known to host lopsided asymmetry especially in the outer parts of a galaxy. The role of such asymmetry in the dynamical evolution of a galaxy has not been explored so far. Following Lindblad's original idea of kinematic density waves, we show that the outer part of an exponential disc is ideally suitable for hosting lopsided asymmetry. Further, we compute the transport of angular momentum in the combined stars and gas disc embedded in a dark matter halo. We show that in a pure star and gas disc, there is a transition point where the free precession frequency of a lopsided mode, Omega - kappa, changes from retrograde to prograde and this in turn reverses the direction of angular momentum flow in the disc leading to an unphysical behaviour. We show that this problem is overcome in the presence of a dark matter halo, which sets the angular momentum flow outwards as required for disc evolution, provided the lopsidedness is leading in nature. This, plus the well-known angular momentum transport in the inner parts due to spiral arms, can facilitate an inflow of gas from outside perhaps through the cosmic filaments.
Resumo:
The density wave theory for the grand-design two-armed spiral pattern in galaxies is successful in explaining several observed features. However, the long-term persistence of this spiral structure is a serious problem since the group transport would destroy it within about a billion years as shown in a classic paper by Toomre. In this paper, we include the low-velocity dispersion component, namely gas, on an equal footing with stars in the formulation of the density wave theory, and obtain the dispersion relation for this coupled system. We show that the inclusion of gas makes the group transport slower by a factor of few, thus allowing the pattern to persist longer - for several billion years. Though still less than the Hubble time, this helps in making the spiral structure more long-lived. Further we show that addition of gas is essential to get a stable wave for the observed pattern speed for the Galaxy, which otherwise is not possible for a one-component stellar disc.
Resumo:
Many bacteria secrete a highly hydrated framework of extracellular polymer matrix on suitable substrates and embed within the matrix to form a biofilm. Bacterial biofilms are observed on many medical devices, endocarditis, periodontitis and lung infections in cystic fibrosis patients. Bacteria in biofilm are protected from antibiotics and >1,000 times of the minimum inhibitory concentration may be required to treat biofilm infections. Here, we demonstrated that shock waves could be used to remove Salmonella, Pseudomonas and Staphylococcus biofilms in urinary catheters. The studies were extended to a Pseudomonas chronic pneumonia lung infection and Staphylococcus skin suture infection model in mice. The biofilm infections in mice, treated with shock waves became susceptible to antibiotics, unlike untreated biofilms. Mice exposed to shock waves responded to ciprofloxacin treatment, while ciprofloxacin alone was ineffective in treating the infection. These results demonstrate for the first time that, shock waves, combined with antibiotic treatment can be used to treat biofilm infection on medical devices as well as in situ infections.
Resumo:
Low surface brightness (LSB) galaxies form a major class of galaxies, and are characterized by low disc surface density and low star formation rate. These are known to be dominated by dark matter halo from the innermost regions. Here, we study the role of the dark matter halo on the grand-design, m = 2, spiral modes in a galactic disc by carrying out a global mode analysis in the WKB approximation. The Bohr-Sommerfeld quantization rule is used to determine how many discrete global spiral modes are permitted. First, a typical superthin, LSB galaxy UGC 7321 is studied by taking only the galactic disc, modelled as a fluid; and then the disc embedded in a dark matter halo. We find that both cases permit the existence of global spiral modes. This is in contrast to earlier results where the inclusion of dark matter halo was shown to nearly fully suppress local, swing-amplified spiral features. Although technically global modes are permitted in the fluid model as shown here, we argue that due to lack of tidal interactions, these are not triggered in LSB galaxies. For comparison, we carried out a similar analysis for the Galaxy, for which the dark matter halo does not dominate in the inner regions. We show that here too the dark matter halo has little effect, hence the disc embedded in a halo is also able to support global modes. The derived pattern speed of the global mode agrees fairly well with the observed value for the Galaxy.
Resumo:
Present paper is the first one in the series devoted to the dynamics of traveling waves emerging in the uncompressed, tri-atomic granular crystals. This work is primarily concerned with the dynamics of one-dimensional periodic granular trimer (tri-atomic) chains in the state of acoustic vacuum. Each unit cell consists of three spherical particles of different masses subject to periodic boundary conditions. Hertzian interaction law governs the mutual interaction of these particles. Under the assumption of zero pre-compression, this interaction is modeled as purely nonlinear, which means the absence of linear force component. The dynamics of such chains is governed by the two system parameters that scale the mass ratios between the particles of the unit cell. Such a system supports two different classes of periodic solutions namely the traveling and standing waves. The primary objective of the present study is the numerical analysis of the bifurcation structure of these solutions with emphasis on the dynamics of traveling waves. In fact, understanding of the bifurcation structure of the traveling wave solutions emerging in the unit-cell granular trimer is rather important and can shed light on the more complex nonlinear wave phenomena emerging in semi-infinite trimer chains. (c) 2016 Elsevier B.V. All rights reserved.