211 resultados para SEARCH ALGORITHM
Resumo:
An analytical study for the static strength of adhesive lap joints is presented. The earlier solutions of Volkersen [i], DeBruyne[2] and others were limited to linear adhesives. The influence of adhesive non-linearity was first considered by Grimes' et al[3] and Dickson et al [4]. Recently Hart-Smith[5] successfully introduced elastic-plastic behaviour of the adhesive. In the present study the problem is formulated for general non-linear adhesive behaviour and an efficient numerical algorithm is written for the solution. Bilinear and trilinear models for the nonlinearity yield closed form analytical solutions.
Resumo:
A rank-augmnented LU-algorithm is suggested for computing a generalized inverse of a matrix. Initially suitable diagonal corrections are introduced in (the symmetrized form of) the given matrix to facilitate decomposition; a backward-correction scheme then yields a desired generalized inverse.
Resumo:
Numerical and experimental studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring are performed. The alloy is electromagnetically stirred to produce semisolid slurry in a cylindrical graphite mould placed in the annulus of a linear electromagnetic stirrer. The mould is cooled at the bottom, such that solidification progresses from the bottom to the top of the cylindrical mould. A numerical model is developed for simulating the transport phenomena associated with the solidification process using a set of single-phase governing equations of mass. momentum, energy. and species conservation. The viscosity variation of the slurry, used in the model, is determined experimentally using a rotary viscometer. The set of governing equations is solved using a pressure-based finite volume technique, along with an enthalpy based phase change algorithm. The numerical study involves prediction of temperature, velocity, species and solid fraction distribution in the mould. Corresponding solidification experiments are performed, with time-temperature history recorded at key locations. The microstructures at various temperature measurement locations in the solidified billet are analyzed. The numerical predictions of temperature variations are in good agreement with experiments, and the predicted flow field evolution correlates well with the microstructures observed at various locations.
Resumo:
Using the framework of a new relaxation system, which converts a nonlinear viscous conservation law into a system of linear convection-diffusion equations with nonlinear source terms, a finite variable difference method is developed for nonlinear hyperbolic-parabolic equations. The basic idea is to formulate a finite volume method with an optimum spatial difference, using the Locally Exact Numerical Scheme (LENS), leading to a Finite Variable Difference Method as introduced by Sakai [Katsuhiro Sakai, A new finite variable difference method with application to locally exact numerical scheme, journal of Computational Physics, 124 (1996) pp. 301-308.], for the linear convection-diffusion equations obtained by using a relaxation system. Source terms are treated with the well-balanced scheme of Jin [Shi Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms, Mathematical Modeling Numerical Analysis, 35 (4) (2001) pp. 631-645]. Bench-mark test problems for scalar and vector conservation laws in one and two dimensions are solved using this new algorithm and the results demonstrate the efficiency of the scheme in capturing the flow features accurately.
Resumo:
Multiresolution synthetic aperture radar (SAR) image formation has been proven to be beneficial in a variety of applications such as improved imaging and target detection as well as speckle reduction. SAR signal processing traditionally carried out in the Fourier domain has inherent limitations in the context of image formation at hierarchical scales. We present a generalized approach to the formation of multiresolution SAR images using biorthogonal shift-invariant discrete wavelet transform (SIDWT) in both range and azimuth directions. Particularly in azimuth, the inherent subband decomposition property of wavelet packet transform is introduced to produce multiscale complex matched filtering without involving any approximations. This generalized approach also includes the formulation of multilook processing within the discrete wavelet transform (DWT) paradigm. The efficiency of the algorithm in parallel form of execution to generate hierarchical scale SAR images is shown. Analytical results and sample imagery of diffuse backscatter are presented to validate the method.
Resumo:
A theory for Fournier polarography and higher order harmonics is presented. This is valid for reversible systems under semi-infinite diffusion to stationary and expanding plane electrodes. The algorithm is simple, accurate and exploits the identities holding for the interfacial concentrations. The computations — minimal in nature — can be carried out easily and the results given here were evaluated taking into account the presence of harmonics to, at least, the twenty-fifth order.
Resumo:
In this note, the fallacy in the method given by Sharma and Swarup, in their paper on time minimising transportation problem, to determine the setS hkof all nonbasic cells which when introduced into the basis, either would eliminate a given basic cell (h, k) from the basis or reduce the amountx hkis pointed out.
Resumo:
An isolated wind power generation scheme using slip ring induction machine (SRIM) is proposed. The proposed scheme maintains constant load voltage and frequency irrespective of the wind speed or load variation. The power circuit consists of two back-to-back connected inverters with a common dc link, where one inverter is directly connected to the rotor side of SRIM and the other inverter is connected to the stator side of the SRIM through LC filter. Developing a negative sequence compensation method to ensure that, even under the presence of unbalanced load, the generator experiences almost balanced three-phase current and most of the unbalanced current is directed through the stator side converter is the focus here. The SRIM controller varies the speed of the generator with variation in the wind speed to extract maximum power. The difference of the generated power and the load power is either stored in or extracted from a battery bank, which is interfaced to the common dc link through a multiphase bidirectional fly-back dc-dc converter. The SRIM control scheme, maximum power point extraction algorithm and the fly-back converter topology are incorporated from available literature. The proposed scheme is both simulated and experimentally verified.
Resumo:
Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples. We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.
Resumo:
In recent years, identification of sequence patterns has been given immense importance to understand better their significance with respect to genomic organization and evolutionary processes. To this end, an algorithm has been derived to identify all similar sequence repeats present in a protein sequence. The proposed algorithm is useful to correlate the three-dimensional structure of various similar sequence repeats available in the Protein Data Bank against the same sequence repeats present in other databases like SWISS-PROT, PIR and Genome databases.
Resumo:
We are addressing the novel problem of jointly evaluating multiple speech patterns for automatic speech recognition and training. We propose solutions based on both the non-parametric dynamic time warping (DTW) algorithm, and the parametric hidden Markov model (HMM). We show that a hybrid approach is quite effective for the application of noisy speech recognition. We extend the concept to HMM training wherein some patterns may be noisy or distorted. Utilizing the concept of ``virtual pattern'' developed for joint evaluation, we propose selective iterative training of HMMs. Evaluating these algorithms for burst/transient noisy speech and isolated word recognition, significant improvement in recognition accuracy is obtained using the new algorithms over those which do not utilize the joint evaluation strategy.
Resumo:
Particle filters find important applications in the problems of state and parameter estimations of dynamical systems of engineering interest. Since a typical filtering algorithm involves Monte Carlo simulations of the process equations, sample variance of the estimator is inversely proportional to the number of particles. The sample variance may be reduced if one uses a Rao-Blackwell marginalization of states and performs analytical computations as much as possible. In this work, we propose a semi-analytical particle filter, requiring no Rao-Blackwell marginalization, for state and parameter estimations of nonlinear dynamical systems with additively Gaussian process/observation noises. Through local linearizations of the nonlinear drift fields in the process/observation equations via explicit Ito-Taylor expansions, the given nonlinear system is transformed into an ensemble of locally linearized systems. Using the most recent observation, conditionally Gaussian posterior density functions of the linearized systems are analytically obtained through the Kalman filter. This information is further exploited within the particle filter algorithm for obtaining samples from the optimal posterior density of the states. The potential of the method in state/parameter estimations is demonstrated through numerical illustrations for a few nonlinear oscillators. The proposed filter is found to yield estimates with reduced sample variance and improved accuracy vis-a-vis results from a form of sequential importance sampling filter.
Resumo:
Purpose: A computationally efficient algorithm (linear iterative type) based on singular value decomposition (SVD) of the Jacobian has been developed that can be used in rapid dynamic near-infrared (NIR) diffuse optical tomography. Methods: Numerical and experimental studies have been conducted to prove the computational efficacy of this SVD-based algorithm over conventional optical image reconstruction algorithms. Results: These studies indicate that the performance of linear iterative algorithms in terms of contrast recovery (quantitation of optical images) is better compared to nonlinear iterative (conventional) algorithms, provided the initial guess is close to the actual solution. The nonlinear algorithms can provide better quality images compared to the linear iterative type algorithms. Moreover, the analytical and numerical equivalence of the SVD-based algorithm to linear iterative algorithms was also established as a part of this work. It is also demonstrated that the SVD-based image reconstruction typically requires O(NN2) operations per iteration, as contrasted with linear and nonlinear iterative methods that, respectively, requir O(NN3) and O(NN6) operations, with ``NN'' being the number of unknown parameters in the optical image reconstruction procedure. Conclusions: This SVD-based computationally efficient algorithm can make the integration of image reconstruction procedure with the data acquisition feasible, in turn making the rapid dynamic NIR tomography viable in the clinic to continuously monitor hemodynamic changes in the tissue pathophysiology.
Resumo:
The accretion disk around a compact object is a nonlinear general relativistic system involving magnetohydrodynamics. Naturally, the question arises whether such a system is chaotic (deterministic) or stochastic (random) which might be related to the associated transport properties whose origin is still not confirmed. Earlier, the black hole system GRS 1915+105 was shown to be low-dimensional chaos in certain temporal classes. However, so far such nonlinear phenomena have not been studied fairly well for neutron stars which are unique for their magnetosphere and kHz quasi-periodic oscillation (QPO). On the other hand, it was argued that the QPO is a result of nonlinear magnetohydrodynamic effects in accretion disks. If a neutron star exhibits chaotic signature, then what is the chaotic/correlation dimension? We analyze RXTE/PCA data of neutron stars Sco X-1 and Cyg X-2, along with the black hole Cyg X-1 and the unknown source Cyg X-3, and show that while Sco X-1 and Cyg X-2 are low dimensional chaotic systems, Cyg X-1 and Cyg X-3 are stochastic sources. Based on our analysis, we argue that Cyg X-3 may be a black hole.
Resumo:
In this paper, we present numerical evidence that supports the notion of minimization in the sequence space of proteins for a target conformation. We use the conformations of the real proteins in the Protein Data Bank (PDB) and present computationally efficient methods to identify the sequences with minimum energy. We use edge-weighted connectivity graph for ranking the residue sites with reduced amino acid alphabet and then use continuous optimization to obtain the energy-minimizing sequences. Our methods enable the computation of a lower bound as well as a tight upper bound for the energy of a given conformation. We validate our results by using three different inter-residue energy matrices for five proteins from protein data bank (PDB), and by comparing our energy-minimizing sequences with 80 million diverse sequences that are generated based on different considerations in each case. When we submitted some of our chosen energy-minimizing sequences to Basic Local Alignment Search Tool (BLAST), we obtained some sequences from non-redundant protein sequence database that are similar to ours with an E-value of the order of 10(-7). In summary, we conclude that proteins show a trend towards minimizing energy in the sequence space but do not seem to adopt the global energy-minimizing sequence. The reason for this could be either that the existing energy matrices are not able to accurately represent the inter-residue interactions in the context of the protein environment or that Nature does not push the optimization in the sequence space, once it is able to perform the function.