214 resultados para Road materials.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of various contributions of first principles calculations in the area of hydrogen storage, particularly for the carbon-based sorption materials, is presented. Carbon-based sorption materials are considered as promising hydrogen storage media due to their light weight and large surface area. Depending upon the hybridization state of carbon, these materials can bind the hydrogen via various mechanisms, including physisorption, Kubas and chemical bonding. While attractive binding energy range of Kubas bonding has led to design of several promising storage systems, in reality the experiments remain very few due to materials design challenges that are yet to be overcome. Finally, we will discuss the spillover process, which deals with the catalytic chemisorption of hydrogen, and arguably is the most promising approach for reversibly storing hydrogen under ambient conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural adhesive bonding is widely used to execute assemblies in automobile and aerospace structures. The quality and reliability of these bonded joints must be ensured during service. In this context non destructive evaluation of these bonded structures play an important role. Evaluation of adhesively bonded composite single lap shear joints has been attempted through experimental approach. Series of tests, non-destructive as well as destructive were performed on different sets of carbon fiber reinforced polymer (CFRP) composite lap joint specimens with varied bond quality. Details of the experimental investigations carried out and the outcome are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knowledge of adsorption characteristics of activated carbon (porous material) in the temperature range from 5 to 20 K is essential when used in cryosorption pumps for nuclear fusion applications. However, such experimental data are very scarce in the literature, especially below 77 K. So, an experimental system is designed and fabricated to measure the adsorption characteristics of porous materials under variable cryogenic temperatures (from 5 K to 100 K). This is based on the commercially available micropore-analyser coupled to a closed helium cycle two-stage Gifford McMahon (GM) Cryocooler, which allows the sample to be cooled to 4.2 K. The sample port is coupled to the Cryocooler through a heat switch, which isolates this port from the cold head of the Cryocooler. By this, the sample temperature can now be varied without affecting the Cryocooler. The setup enables adsorption studies in the pressure range from atmospheric down to 10(-4) Pa. The paper describes the details of the experimental setup and presents the results of adsorption studies at 77 K for activated carbon with nitrogen as adsorbate. The system integration is now completed to enable adsorption studies at 4.2 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of spectral analysis of surface waves (SASW) tests were performed on asphaltic road pavements by dropping a metallic 6.5 kg sphere, from a height (H) ranging from 1 to 3 m. Various combinations of source to first receiver distance (S) and receiver spacing (X) were employed. By increasing the height of the fall of the dropping mass, the maximum wavelength (lambda(max)), up to which the shear wave velocity profile can be predicted with the usage of the SASW measurements, was found to increase continuously. The height of fall of the dropping mass also seems to affect the admissible range of the wavelength for given combinations of X and S. Irrespective of different chosen combinations of S, X and H, a unique combined dispersion curve was generated in all the cases for a given pavement site as long as the threshold minimum value of the coherence function is greater than 0.90.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the formation of hydrogels from sodium cholate solution in the presence of a variety of metal ions (Ca2+, Cu2+, Co2+, Zn2+, Cd2+, Hg2+ and Ag+). Morphological studies of the xerogels by electron microscopy reveal the presence of helical nanofibres. The rigid helical framework in the calcium cholate hydrogel was utilised to synthesize hybrid materials (AuNPs and AgNPs). Doping of transition metal salts into the calcium cholate hydrogel brings out the possibility of synthesising metal sulphide nano-architectures keeping the hydrogel network intact. These novel gel-nanoparticle hybrid materials have encouraging application potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the size-dependent density of nanoparticles and nanostructured materials keeping the recent experimental results in mind. The density is predicted to increase with decreasing size for nanoparticles but it can decrease with size for nanostructured materials that corroborates the experimental results reported in the literature. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-layer graphene (SLG), the 3.4 angstrom thick two-dimensional sheet of sp(2) carbon atoms, was first prepared in 2004 by mechanical exfoliation of graphite crystals using the scotch tape technique. Since then, SLG has been prepared by other physical methods such as laser irradiation or ultrasonication of graphite in liquid media. Chemical methods of synthesis of SLG are more commonly used; the most popular involves preparation of single-layer graphene oxide followed by reduction with a stable reagent, often assisted by microwave heating. This method yields single-layer reduced graphene oxide. Other methods for preparing SLG include chemical vapour deposition over surfaces of transition metals such as Ni and Cu. Large-area SLG has also been prepared by epitaxial growth over SIC. Few-layer graphene (FLG) is prepared by several methods; arc discharge of graphite in hydrogen atmosphere being the most convenient. Several other methods for preparing FLG include exfoliation of graphite oxide by rapid heating, ultrasonication or laser irradiation of graphite in liquid media, reduction of few-layer graphene oxide, alkali metal intercalation followed by exfoliation. Graphene nanoribbons, which are rectangular strips of graphene, are best prepared by the unzipping of carbon nanotubes by chemical oxidation or laser irradiation. Many graphene analogues of inorganic materials such as MoS2, MoSe2 and BN have been prepared by mechanical exfoliation, ultrasonication and by chemical methods involving high-temperature or hydrothermal reactions and intercalation of alkali metals followed by exfoliation. Scrolls of graphene are prepared by potassium intercalation in graphite or by microwave irradiation of graphite immersed in liquid nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solvated metal atom dispersion (SMAD) method has been used for the synthesis of colloids of metal nanoparticles. It is a top-down approach involving condensation of metal atoms in low temperature solvent matrices in a SMAD reactor maintained at 77 K. Warming of the matrix results in a slurry of metal atoms that interact with one another to form particles that grow in size. The organic solvent solvates the particles and acts as a weak capping agent to halt/slow down the growth process to a certain extent. This as-prepared colloid consists of metal nanoparticles that are quite polydisperse. In a process termed as digestive ripening, addition of a capping agent to the as-prepared colloid which is polydisperse renders it highly monodisperse either under ambient or thermal conditions. In this, as yet not well-understood process, smaller particles grow and the larger ones diminish in size until the system attains uniformity in size and a dynamic equilibrium is established. Using the SMAD method in combination with digestive ripening process, highly monodisperse metal, core-shell, alloy, and composite nanoparticles have been synthesized. This article is a review of our contributions together with some literature reports on this methodology to realize various nanostructured materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of high resolution satellite images has been an important research topic for urban analysis. One of the important features of urban areas in urban analysis is the automatic road network extraction. Two approaches for road extraction based on Level Set and Mean Shift methods are proposed. From an original image it is difficult and computationally expensive to extract roads due to presences of other road-like features with straight edges. The image is preprocessed to improve the tolerance by reducing the noise (the buildings, parking lots, vegetation regions and other open spaces) and roads are first extracted as elongated regions, nonlinear noise segments are removed using a median filter (based on the fact that road networks constitute large number of small linear structures). Then road extraction is performed using Level Set and Mean Shift method. Finally the accuracy for the road extracted images is evaluated based on quality measures. The 1m resolution IKONOS data has been used for the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supramolecular chemistry is an emerging tool for devising materials that can perform specified functions. The self-assembly of facially amphiphilic bile acid molecules has been extensively utilized for the development of functional soft materials. Supramolecular hydrogels derived from the bile acid backbone act as useful templates for the intercalation of multiple components. Based on this, synthesis of gel-nanoparticle hybrid materials, photoluminescent coating materials, development of a new enzyme assay technique, etc. were achieved in the author's laboratory. The present account highlights some of these achievements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Riboflavin tetraacetate-catalyzed aerobic photooxidation of 1-(4-methoxyphenyl)ethanol was investigated as a model reaction under blue visible light in different soft gel materials, aiming to establish their potential as reaction vessels for photochemical transformations. Three strategies involving different degrees of organization of the catalyst within the gel network were explored, and the results compared to those obtained in homogeneous and micellar solutions. In general, physical entrapment of both the catalyst and the substrate under optimized concentrations into several hydrogel matrices (including low-molecular-weight and biopolymer-based gels) allowed the photooxidation with conversions between 55 and 100% within 120 min (TOF similar to 0.045-0.08 min(-1); k(obs) similar to 0.011-0.028 min(-1)), albeit with first-order rates ca. 1-3-fold lower than in solution under comparable non-stirred conditions. Remarkably, the organogel made of a cyclohexane-based bisamide gelator in CH3CN not only prevented the photodegradation of the catalyst but also afforded full conversion in less than 60 min (TOF similar to 0.167 min(-1); k(obs) similar to 0.073 min(-1)) without the need of additional proton transfer mediators (e. g., thiourea) as it occurs in CH3CN solutions. In general, the gelators could be recycled without detriment to their gelation ability and reaction rates. Moreover, kinetics could be fine-tuned according to the characteristics of the gel media. For instance, entangled fibrillar networks with relatively high mechanical strength were usually associated with lower reaction rates, whereas wrinkled laminated morphologies seemed to favor the reaction. In addition, the kinetics results showed in most cases a good correlation with the aeration efficiency of the gel media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a laboratory trial to study the effectiveness of a waste-based binder to stabilize expansive soils. The proposed binders viz., Fly ash and/or Ground granulated Blast furnace slag (GGBS) were mixed with the expansive soil along with a small amount of lime to increase soil pH and enable pozzolanic reactions. The geotechnical characteristics of the various combinations of samples were investigated through the compaction tests, unconfined compression tests etc. It was found that the addition of GGBS with and without fly ash and lime has significant influence on the geotechnical characteristics of the soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, various kinds of textures were attained on the steel surfaces. Roughness of the textures was varied using different grits of emery papers or polishing powders. Pins made of pure Al, Al-4Mg alloy and pure Mg were then slid against prepared steel plate surfaces at various numbers of cycles using an inclined pin-on-plate sliding tester. Tests were conducted at a sliding velocity of 2mms(-1) in ambient conditions under both dry and lubricated conditions. Normal loads were increased up to 110N during the tests. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. Surface roughness parameters of the plate were measured using an optical profilometer. In the experiments, it was observed that the coefficient of friction and formation of a transfer layer (under dry and lubricated conditions) only depended on surface texture during the first few sliding cycles. The steady-state variation in the coefficient of friction under both dry and lubrication conditions was attributed to the self-organisation of texture of the surfaces at the interface during sliding. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several constitutive inequalities have been proposed in the literature to quantify the notion that ‘stress increases with strain’ in an elastic material. Due to some inherent shortcomings in them, which we discuss, we propose a new tensorial criterion for isotropic materials. We also present necessary conditions in terms of elasticity tensors for the onset of elastic instabilities.