228 resultados para Rigid
Resumo:
The dynamics of a feedback-controlled rigid robot is most commonly described by a set of nonlinear ordinary differential equations. In this paper we analyze these equations, representing the feedback-controlled motion of two- and three-degrees-of-freedom rigid robots with revolute (R) and prismatic (P) joints in the absence of compliance, friction, and potential energy, for the possibility of chaotic motions. We first study the unforced or inertial motions of the robots, and show that when the Gaussian or Riemannian curvature of the configuration space of a robot is negative, the robot equations can exhibit chaos. If the curvature is zero or positive, then the robot equations cannot exhibit chaos. We show that among the two-degrees-of-freedom robots, the PP and the PR robot have zero Gaussian curvature while the RP and RR robots have negative Gaussian curvatures. For the three-degrees-of-freedom robots, we analyze the two well-known RRP and RRR configurations of the Stanford arm and the PUMA manipulator respectively, and derive the conditions for negative curvature and possible chaotic motions. The criteria of negative curvature cannot be used for the forced or feedback-controlled motions. For the forced motion, we resort to the well-known numerical techniques and compute chaos maps, Poincare maps, and bifurcation diagrams. Numerical results are presented for the two-degrees-of-freedom RP and RR robots, and we show that these robot equations can exhibit chaos for low controller gains and for large underestimated models. From the bifurcation diagrams, the route to chaos appears to be through period doubling.
Resumo:
Sandwich structures, especially those with honeycomb and grid structures as the core material, are very commonly employed in aircraft structures. There is an increasing use of closed-pore rigid syntactic foams as core materials in sandwich constructions because they possess a number of favourable properties. The syntactic foams, owing to their structure and formation, behave differently under compression compared to other traditionally used core materials. In the present study, therefore, syntactic foam core sandwich constructions are evaluated for their behaviour under compression in both edgewise and flatwise orientations. Further, the work characterises the relative performance of two sets of sandwich materials, one containing glass-epoxy and the other, glass/carbon hybrid-epoxy skins. As non-standard geometry test specimens were involved, only a comparative evaluation was contemplated in this approach. The experiments indicate that the nature of the reinforcement fabric in the skin has a bearing on the test results in edgewise orientation. Thus, the tendency towards initiation of vertical crack in the central plane of the core material, which is a typical fracture event in this kind of material, was found to occur after a delay for the specimens containing the glass fabric in the skin. Attempts are made to establish the correlation between observations made on the test specimen visually during the course of testing and the post-compression microscopic examinations of the fracture features.
Resumo:
Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such 'non-parabolic' flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.
Resumo:
This paper describes the synthesis, characterization and studies of dendrimers possessing an amino acid-metal complex as the core. Using Frechet-type polyaryl ether dendrons, L-tyrosine-metal (Zn-II and Co-II) complex cored dendrimers of 0-4 generations were synthesized. The metal complexation of the tyrosine unit at the focal point of these dendrons took place smoothly, in excellent yields, even though the sizes of the dendrons increase as the generations advance. Spectrophotometric titrations with CoII metal ion confirmed the formation of a 2 : 1 dendritic ligand to metal complex and the existence of a pseudotetrahedral geometry at the metal centre is also inferred. Cyclic voltammetric studies of dendrimer-Co-II complexes showed that while the electron transfer of Co-II to Co-I was facile for generations 0-2, such a process was difficult with generations 3 and 4, indicating a rigid encapsulation of the metal ion centre by proximal dendron groups. Further reduction of Co-I to Co-0 and the corresponding oxidation processes appear to be limited by adsorption at the surfaces of the electrodes.
Resumo:
Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for ferric wheels up to Fe-12. The largest calculation involves the Fe-12 ring which spans a Hilbert space dimension of about 145x10(6) for the M-S=0 subspace. Our calculated gaps from the singlet ground state to the excited triplet state agree well with the experimentally measured values. Study of the static structure factor shows that the ground state is spontaneously dimerized for ferric wheels. The spin states of ferric wheels can be viewed as quantized states of a rigid rotor with the gap between the ground and first excited states defining the inverse of the moment of inertia. We have studied the quantum dynamics of Fe-10 as a representative of ferric wheels. We use the low-lying states of Fe-10 to solve exactly the time-dependent Schrodinger equation and find the magnetization of the molecule in the presence of an alternating magnetic field at zero temperature. We observe a nontrivial oscillation of the magnetization which is dependent on the amplitude of the ac field. We have also studied the torque response of Fe-12 as a function of a magnetic field, which clearly shows spin-state crossover.
Resumo:
Two new classes of mono- and bis-D-pi-A cryptand derivatives with a flexible and a rigid cryptand core have been synthesized. The linear and nonlinear optical properties of these molecules are probed. The three dimensional cavity of the cryptand moiety has been utilized to modulate the SHG intensity to different extents in solution with metal ion inputs such as Ni-II,Cu-II,Zn-II, and Cd-II. We also report that decomplexation events can be used to reversibly modulate their NLO responses.
Resumo:
A passive vertical hopping robot is here highly idealised as two vertically arranged masses acted on by gravity and coupled by a linear spring. The lower mass makes dead (e = 0) collisions with the rigid ground. The equations of motion can be reduced to a one dimensional map. Fixed points of the map are found in which case the robot hops incessantly. For these conservative solutions the lower mass collides with the ground with zero impact velocity. The interval of attraction for these conservative fixed points depends on system parameters.
Resumo:
‘Best’ solutions for the shock-structure problem are obtained by solving the Boltzmann equation for a rigid sphere gas by applying minimum error criteria on the Mott-Smith ansatz. The use of two such criteria minimizing respectively the local and total errors, as well as independent computations of the remaining error, establish the high accuracy of the solutions, although it is shown that the Mott-Smith distribution is not an exact solution of the Boltzmann equation even at infinite Mach number. The minimum local error method is found to be particularly simple and efficient. Adopting the present solutions as the standard of comparison, it is found that the widely used v2x-moment solutions can be as much as a third in error, but that results based on Rosen's method provide good approximations. Finally, it is shown that if the Maxwell mean free path on the hot side of the shock is chosen as the scaling length, the value of the density-slope shock thickness is relatively insensitive to the intermolecular potential. A comparison is made on this basis of present results with experiment, and very satisfactory quantitative agreement is obtained.
Resumo:
The slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.
Resumo:
The gain and loss integrals in the Boltzmann equation for a rigid sphere gas are evaluated in closed form for a distribution which can be expressed as a linear combination of Maxwellians. Application to the Mott-Smith bimodal distribution shows that the gain is also bimodal, but the two modes in the gain are less pronounced than in the distribution. Implications of these results for simple collision models in non-equilibrium flow are discussed.
Resumo:
A flow-induced instability in a tube with flexible walls is studied experimentally. Tubes of diameter 0.8 and 1.2 mm are cast in polydimethylsiloxane (PDMS) polymer gels, and the catalyst concentration in these gels is varied to obtain shear modulus in the range 17–550 kPa. A pressure drop between the inlet and outlet of the tube is used to drive fluid flow, and the friction factor $f$ is measured as a function of the Reynolds number $Re$. From these measurements, it is found that the laminar flow becomes unstable, and there is a transition to a more complicated flow profile, for Reynolds numbers as low as 500 for the softest gels used here. The nature of the $f$–$Re$ curves is also qualitatively different from that in the flow past rigid tubes; in contrast to the discontinuous increase in the friction factor at transition in a rigid tube, it is found that there is a continuous increase in the friction factor from the laminar value of $16\ensuremath{/} Re$ in a flexible tube. The onset of transition is also detected by a dye-stream method, where a stream of dye is injected into the centre of the tube. It is found that there is a continuous increase of the amplitude of perturbations at the onset of transition in a flexible tube, in contrast to the abrupt disruption of the dye stream at transition in a rigid tube. There are oscillations in the wall of the tube at the onset of transition, which is detected from the laser scattering off the walls of the tube. This indicates that the coupling between the fluid stresses and the elastic stresses in the wall results in an instability of the laminar flow.
Resumo:
The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (ρVR / η), the ratio of the viscosities of the wall and fluid ηr = (ηs/η), the ratio of radii H and the dimensionless velocity Γ = (ρV2/G)1/2. Here ρ is the density of the fluid, G is the coefficient of elasticity of the wall and Vis the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter ε = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate do), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctruations due to the Reynolds strees. There is an O(ε1/2) correction to the growth rate, s(1), due to the presence of a wall layer of thickness ε1/2R where the viscous stresses are O(ε1/2) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Γ and wavenumber k where s(l) = 0. At these points, the wail layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(ε) correction to the growth rate s(2) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s(2) increases [is proportional to] (H − 1)−2 for (H − 1) [double less-than sign] 1 (thickness of wall much less than the tube radius), and decreases [is proportional to] (H−4 for H [dbl greater-than sign] 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube.
Resumo:
In the present work, we study the transverse vortex-induced vibrations of an elastically mounted rigid cylinder in a fluid flow. We employ a technique to accurately control the structural damping, enabling the system to take on both negative and positive damping. This permits a systematic study of the effects of system mass and damping on the peak vibration response. Previous experiments over the last 30 years indicate a large scatter in peak-amplitude data ($A^*$) versus the product of mass–damping ($\alpha$), in the so-called ‘Griffin plot’. A principal result in the present work is the discovery that the data collapse very well if one takes into account the effect of Reynolds number ($\mbox{\textit{Re}}$), as an extra parameter in a modified Griffin plot. Peak amplitudes corresponding to zero damping ($A^*_{{\alpha}{=}0}$), for a compilation of experiments over a wide range of $\mbox{\textit{Re}}\,{=}\,500-33000$, are very well represented by the functional form $A^*_{\alpha{=}0} \,{=}\, f(\mbox{\textit{Re}}) \,{=}\, \log(0.41\,\mbox{\textit{Re}}^{0.36}$). For a given $\mbox{\textit{Re}}$, the amplitude $A^*$ appears to be proportional to a function of mass–damping, $A^*\propto g(\alpha)$, which is a similar function over all $\mbox{\textit{Re}}$. A good best-fit for a wide range of mass–damping and Reynolds number is thus given by the following simple expression, where $A^*\,{=}\, g(\alpha)\,f(\mbox{\textit{Re}})$: \[ A^* \,{=}\,(1 - 1.12\,\alpha + 0.30\,\alpha^2)\,\log (0.41\,\mbox{\textit{Re}}^{0.36}). \] In essence, by using a renormalized parameter, which we define as the ‘modified amplitude’, $A^*_M\,{=}\,A^*/A^*_{\alpha{=}0}$, the previously scattered data collapse very well onto a single curve, $g(\alpha)$, on what we refer to as the ‘modified Griffin plot’. There has also been much debate over the last three decades concerning the validity of using the product of mass and damping (such as $\alpha$) in these problems. Our results indicate that the combined mass–damping parameter ($\alpha$) does indeed collapse peak-amplitude data well, at a given $\mbox{\textit{Re}}$, independent of the precise mass and damping values, for mass ratios down to $m^*\,{=}\,1$.
Resumo:
We present the concept, prototypes, and an optimal design method for a compliant mechanism kit as a parallel to the kits available for rigid-body mechanisms. The kit consists of flexible beams and connectors that can be easily hand-assembled using snap fits. It enables users, using their creativity and mechanics intuition, to quickly realize a compliant mechanism. The mechanisms assembled in this manner accurately capture the essential behavior of the topology, shape, size and material aspects and thereby can lead the way for a real compliant mechanism for practical use. Also described in this paper are the design of the connector to which flexible beams can be added in eight different directions; and prototyping of the spring steel connectors as well as beams using wire-cut electro discharge machining. It is noted in this paper that the concept of the kit also resolves a discrepancy in the finite element (FE) modeling of beam-based compliant mechanisms. The discrepancy arises when two or more beams are joining at one point and thus leading to increased stiffness. After resolving this discrepancy, this work extends the topology optimization to automatically generate designs that can be assembled with the kit. Thus, the kit and the accompanying analysis and optimal synthesis procedures comprise a self-contained educational as well as a research and pragmatic toolset for compliant mechanisms. The paper also illustrates how human creativity finds new ways of using the kit beyond the original intended use and how it is useful even for a novice to design compliant mechanisms.
Resumo:
As with 1,2-diphenylethane (dpe), X-ray crystallographic methods measure the central bond in meso-3,4-diphenylhexane-2,5-done (dphd) as significantly shorter than normal for an sp(3)-sp(3) bond. The same methods measure the benzylic (ethane C-Ph) bonds in dphd as unusually long for sp(3)-sp(2) liaisons. Torsional motions of the phenyl rings about the C-Ph bonds have been proposed as the artifacts behind the result of a 'short' central bond in dpe. While a similar explanation can, presumably, hold for the even 'shorter' central bond in dphd, it cannot account for the 'long' C-Ph bonds. The phenyl groups, departing much from regular hexagonal shape, adopt highly skewed conformations with respect to the plane constituted by the four central atoms. It is thought that-the thermal motions of the phenyl rings, conditioned by the potential wells in which they are ensconced in the unit cell, are largely libratory around their normal axes. In what appears to be a straightforward explanation under the 'rigid-body' concept, it appears that these libratory motions of the phenyl rings, that account, at the same time, for the 'short' central bond, are the artifacts behind the 'long' measurement of the C-Ph bonds. These motions could be superimposed on torsional motions analogous to those proposed in the case of dpe. An inspection of the ORTEP diagram from the 298 K data on dphd clearly suggests these possibilities. Supportive evidence for these qualitative explanations from an analysis of the differences between the mean square displacements of C(1) and C(7)/C(1a) and C(7a) based on the 'rigid-body model' is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.