259 resultados para Redox capacitance
Resumo:
There has been increasing interest on various properties and applications of electronically conducting polymers. Polyethylenedioxythiophene (PEDOT) is an interesting polymer of this type as it exhibits very high ionic conductivity. In the present study, PEDOT has been electrochemically deposited on stainless steel (SS) substrate for supercapacitor studies. PEDOT/SS electrodes prepared in 0.1M H2SO4 in presence of a surfactant, sodium dodecylsulphate (SDS), have been found to yield higher specific capacitance (SC) than the electrodes prepared from neutral aqueous electrolyte. The effects of concentration of H(2)SO4(,) concentration of SDS, potential of deposition, and nature of supporting electrolytes used for capacitor studies on SC of the PEDOT/SS electrodes have been studied. SC values as high as 250 F/g in 1M oxalic acid have been obtained during the initial stages of cycling. However, there is a rapid decrease in SC on repeated charge-discharge cycling. Spectroscopic data reflect structural changes in PEDOT on extended cycling. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Formation of oxygen radicals during reduction of H2O2 or diperoxovanadate with vanadyl sulfate or ferrous sulfate was indicated by the 1:2:2:1 electron spin resonance (ESR) signals of the DMPO adduct typical of standard radical dotOH radical. Signals derived from diperoxovanadate remained unchanged in the presence of ethanol in contrast to those from H2O2. This gave the clue that they represent a different radical, possibly radical dotOV(O2)2+, formed on breaking a peroxo-bridge of diperoxovanadate complex. The above reaction mixtures evolved dioxygen or, when NADH was present, oxidized it rapidly which was accompanied by consumption of dioxygen. Operation of a cycle of peroxovanadates including this new radical is suggested to explain these redox activities both with vanadyl and ferrous sulfates. It can be triggered by ferrous ions released from cellular stores in the presence of catalytic amounts of peroxovanadates.
Resumo:
Doping dependent current-voltage (I-V) and capacitance-voltage (C-V) measurements were carried out on polypyrrole devices in metal-polymer-metal sandwich structure. Temperature dependent I-V measurements infer that space-charge limited conduction (SCLC) with exponential trap distribution is appropriate for the moderately doped samples, whereas trap-free SCLC is observed in lightly doped samples. Trap densities and energies are estimated, the effective mobility is calculated using the Poole-Frenkel model, and the mobility exhibits thermally activated behavior. Frequency dependent capacitance-voltage characteristics show a peak near zero bias voltage, which implies that these devices are symmetric with a negligible barrier height at the metal-polymer interface. Low frequency capacitance measurements have revealed a negative capacitance at higher voltages due to the processes associated with the injection and redistribution of space-charges. (C) 2010 American Institute of Physics.
Resumo:
Manganese dioxide is known to be an important electroactive material for supercapacitors. Generally, delta-MnO2 is subjected to electrochemical characterization studies in aqueous electrolytes of Na2SO4. It exhibits capacitance behaviour in the potential range between 0 and 1.0 V vs. SCE (saturated calomel electrode). In the present study, it is shown that delta-MnO2 exhibits capacitance behaviour in Sr(NO3)(2) electrolytes also. The suitable potential range in this electrolyte is also found to be 0-1.0 V. Specific capacitancemeasured in Sr(NO3)(2) electrolyte is 192 F g(-1). X-ray photoelectron spectroscopy data confirm that Sr2+ ions get inserted onto delta-MnO2 anoparticles. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A coaxial capacitance voltage divider with a ratio of 110 and a rise time much less than 2.5 ns was developed for use with a transmission line pulse generator capable of producing 100 kV rectangular pulses of 2 mu s duration. The low voltage arm of the divider is a 3 cm long tube of titania (TiO2) turned out from a cylindrical compact. The compact was made by first pressing titania powder using a suitable binder and then sintering at controlled temperatures. The tube was slipped over the terminating end of the pulse-forming cable to form the divider with the cable capacitance.
Resumo:
This paper presents time-domain characteristics of induced current and voltage on a rocket in the presence of its exhaust plume when an electromagnetic (EM) wave generated by a nearby lightning discharge is incident on it. For the EM-field interaction with the rocket, the finite-difference time-domain technique has been used. The distributed electrical parameters, such as capacitance and inductance of the rocket and its exhaust plume, are computed using the method of moments technique. For the electrical characterization of the exhaust plume, the computational fluid dynamics technique has been used. The computed peak value of the electrical conductivity of the exhaust plume is 0.12 S/m near the exit plane and it reduces to 0.02 S/m at the downstream end. The relative permittivity varies from 0.91 to 0.99. The exhaust plume behaves as a good conductor for EM fields with frequencies less than 2.285 GHz. It has been observed that the peak value of the induced current on the rocket gets enhanced significantly in the presence of the conducting exhaust plume for the rocket and exhaust plume dimensions and parameters studied. The magnitude of the time-varying induced current at the tail is much more than that of any other section of the rocket.
Resumo:
This paper presents time-domain characteristics of induced current and voltage on a rocket in the presence of its exhaust plume when an electromagnetic (EM) wave generated by a nearby lightning discharge is incident on it. For the EM-field interaction with the rocket, the finite-difference time-domain technique has been used. The distributed electrical parameters, such as capacitance and inductance of the rocket and its exhaust plume, are computed using the method of moments technique. For the electrical characterization of the exhaust plume, the computational fluid dynamics technique has been used. The computed peak value of the electrical conductivity of the exhaust plume is 0.12 S/m near the exit plane and it reduces to 0.02 S/m at the downstream end. The relative permittivity varies from 0.91 to 0.99. The exhaust plume behaves as a good conductor for EM fields with frequencies less than 2.285 GHz. It has been observed that the peak value of the induced current on the rocket gets enhanced significantly in the presence of the conducting exhaust plume for the rocket and exhaust plume dimensions and parameters studied. The magnitude of the time-varying induced current at the tail is much more than that of any other section of the rocket.
Resumo:
A three-terminal capacitance bridge is developed for the measurement of the dielectric constant of lossy liquids. Using this modified ratio transformer bridge, the capacitance shunted by a resistance as low as 50 Omega is measured at 10 kHz. The capacitance error associated with the inductance of the connecting wire is compensated using the novel method of introducing an additional transformer to the existing ratio transformer bridge. Other sources of capacitance errors, such as the non-zero output impedence of the ratio transformer and the shield capacitances of the cables, are discussed.
Resumo:
One of the foremost design considerations in microelectronics miniaturization is the use of embedded passives which provide practical solution. In a typical circuit, over 80 percent of the electronic components are passives such as resistors, inductors, and capacitors that could take up to almost 50 percent of the entire printed circuit board area. By integrating passive components within the substrate instead of being on the surface, embedded passives reduce the system real estate, eliminate the need for discrete and assembly, enhance electrical performance and reliability, and potentially reduce the overall cost. Moreover, it is lead free. Even with these advantages, embedded passive technology is at a relatively immature stage and more characterization and optimization are needed for practical applications leading to its commercialization.This paper presents an entire process from design and fabrication to electrical characterization and reliability test of embedded passives on multilayered microvia organic substrate. Two test vehicles focusing on resistors and capacitors have been designed and fabricated. Embedded capacitors in this study are made with polymer/ceramic nanocomposite (BaTiO3) material to take advantage of low processing temperature of polymers and relatively high dielectric constant of ceramics and the values of these capacitors range from 50 pF to 1.5 nF with capacitance per area of approximately 1.5 nF/cm(2). Limited high frequency measurement of these capacitors was performed. Furthermore, reliability assessments of thermal shock and temperature humidity tests based on JEDEC standards were carried out. Resistors used in this work have been of three types: 1) carbon ink based polymer thick film (PTF), 2) resistor foils with known sheet resistivities which are laminated to printed wiring board (PWB) during a sequential build-up (SBU) process and 3) thin-film resistor plating by electroless method. Realization of embedded resistors on conventional board-level high-loss epoxy (similar to 0.015 at 1 GHz) and proposed low-loss BCB dielectric (similar to 0.0008 at > 40 GHz) has been explored in this study. Ni-P and Ni-W-P alloys were plated using conventional electroless plating, and NiCr and NiCrAlSi foils were used for the foil transfer process. For the first time, Benzocyclobutene (BCB) has been proposed as a board level dielectric for advanced System-on-Package (SOP) module primarily due to its attractive low-loss (for RF application) and thin film (for high density wiring) properties.Although embedded passives are more reliable by eliminating solder joint interconnects, they also introduce other concerns such as cracks, delamination and component instability. More layers may be needed to accommodate the embedded passives, and various materials within the substrate may cause significant thermo -mechanical stress due to coefficient of thermal expansion (CTE) mismatch. In this work, numerical models of embedded capacitors have been developed to qualitatively examine the effects of process conditions and electrical performance due to thermo-mechanical deformations.Also, a prototype working product with the board level design including features of embedded resistors and capacitors are underway. Preliminary results of these are presented.
Resumo:
Multilayers of Pb(Mg1/3Nb2/3)O-3 (PMN)-PbTiO3 (PT) were deposited through pulsed laser ablation deposition with different periodicities (d=10, 20, 30, 40, 50, 60, and 70 nm) for a constant total thickness of the film. The presence of superlattice reflections in the x-ray diffraction pattern clearly showed the superlattice behavior of the fabricated structures over a periodicity range of 20-50 nm. Polarization hysteresis and the capacitance-voltage characteristics of these films show clear size dependent ferroelectric and antiferroelectric (AFE) characteristics. Presence of long-range coupling and strain in multilayers with lower periodicity (similar to 10 nm) exhibited a clear ferroelectric behavior similar to a solid solution of PMN and PT. Multilayers with higher periodicities (20-50 nm) exhibited antiferroelectric behavior, which could be understood from the energy arguments. On further increase of periodicity, they again exhibit ferroelectric behavior. The polarization studies were carried out beyond the Curie temperature T-c of PMN to understand the interlayer interaction. The interaction is changed to a ferroelectric-paraelectric interlayer and tends to lose its antiferroelectric behavior. The behavior of remnant polarization P-r and dP(r)/dT with temperature clearly proves that the AFE coupling of these superlattices is due to the extrinsic interfacial coupling and not an intrinsic interaction as in a homogeneous conventional AFE material. The evidence of an averaged behavior at a periodicity of similar to 10 nm, and the behavior of individual materials at larger periodicities were further confirmed through dielectric phase transition studies. The presence of AFE interfacial coupling was insignificant over the dielectric phase transition of the multilayers.
Resumo:
Oxovanadium(IV) complexes [VO(sal-argH)(B)] Cl (1-3) and [VO(sal-lysH)(B)] Cl (4-6), where sal-argH2 and sal-lysH(2) are N-salicylidene-L-arginine and N-salicylidene-L-lysine Schiff bases and B is a phenanthroline base, viz. 1,10-phenanthroline (phen in 1 and 4); dipyrido[3,2-d: 2', 3'-f] quinoxaline (dpq in 2 and 5) and dipyrido[3,2-a: 2', 3'-c] phenazine (dppz in 3 and 6), have been prepared, characterized and their DNA photocleavage activity studied. Complex 1, characterized by X-ray crystallography, shows the presence of a vanadyl group in VIVO3N3 coordination geometry with a tridentate Schiff base having a pendant guanidinium moiety and bidentate phen ligand. The complexes exhibit a d-d band at similar to 715 nm in 20% DMF-Tris-HCl buffer. The complexes are redox active showing cathodic and anodic responses near -1.0 V and 0.85 V (vs. SCE) for the V(IV)-V(III) and V(V)-V(IV) couples, respectively, in DMF-Tris-HCl buffer. The complexes bind to calf thymus DNA giving Kb values in the range of 3.8 x 10(4) to 1.6 x 10(5) M-1. Thermal denaturation and viscosity data suggest DNA groove binding nature of the complexes. The complexes do not show any `chemical nuclease'' activity in dark in the presence of 3-mercaptopropionic acid or H2O2. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A (365 nm) and red light (676 nm) via singlet oxygen pathway. The dppz complexes exhibit photocytotoxicity in HeLa cancer cells giving IC50 values of 15.4 mu M for 3 and 17.5 mu M for 6 in visible light while being non-toxic in dark giving IC50 values of > 100 mu M.
Resumo:
The electrical capacitance and resistance of the binary liquid mixture cyclohexane + acetonitrile are measured in the one phase and two phase regions at spot frequencies between 5 kHz and 100 kHz. This sample has a very low gravity affected (∼0.6 mK) region. In one phase region the capacitance data show a sharp, ∼0.7% increase above background within 0.5 degrees of Tc whereas the resistance has a smooth increase of ∼1.5% above background in a (T−Tc) range of 4 degrees. Two phase values of capacitance and resistance from the coexisting phases are used to determine the critical parameters Tc (critical temperature), Rc (resistance at Tc) and Cc (capacitance at Tc). A precise knowledge of these parameters reduces the uncertainty on the critical exponent 0 for C and R. The one phase capacitance data fit to an (1 - α) exponent in a limited temperature range of 0.2 degrees. Resistance data strongly support an (1 - α) exponent over the entire 5 degree range.
Resumo:
Dicobalt(II) complexes [{(B)Co-11)(2)(mu-dtdp)(2)] (1-3) of 3,3'-dithiodipropionic acid (dtdp) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2) and dipyrido13,2-a:2',3'-clphenazine (dppz in 3), have been prepared, characterized and their photo-induced anaerobic DNA cleavage activity studied. The elemental analysis and mass spectral data suggest binuclear formulation of the complexes. The redox inactive complexes have magnetically non-interacting dicobalt(II) core showing magnetic moment of similar to 3.9 p per cobalt(II) center. The complexes show good binding propensity to calf thymus DNA giving K-b values within 4.3 x 10(5)-4.0 x 10(6) M-1. Thermal melting and viscosity data predict DNA groove binding and/or partial intercalative nature of the complexes. The complexes show significant anaerobic DNA cleavage activity in green light under argon atmosphere possibly involving radical species generated from the disulfide moiety in a type-I pathway. The DNA cleavage reaction under aerobic medium in green light is found to involve hydroxyl radical species. The dppz complex 3 exhibits significant photocytotoxicity in HeLa cervical cancer cells with an IC50 value of 2.31 mu M in UV-A light of 365 nm, while it is essentially non-toxic in dark giving an IC50 value of >200 mu M. A significant reduction of the dark toxicity of the organic dppz base (IC50 = 8.3 mu M in dark) is observed on binding to the cobalt(II) center while essentially retaining its photocytotoxicity in UV-A light (IC50 = 0.4 mu M). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ferrocene-appended copper(II) complexes [Cu( Fc-tpy)(B)](ClO4)(2) (1-3) and [Cu(Ph-tpy)(dppz)](ClO4)(2) (4) as control, where Fc-tpy is 4'-ferroceny1-2,2':6',2 ''-terpyridine, Ph-tpy is 4'-pheny1-2,2':6',2 ''-terpyridine, and B is a phenanthroline base, viz., 1,10-phenanthroline (phen, 1), dipyridoquinoxaline (dpq, 2), and dipyridophenazine (dppz, 3), were prepared and structurally characterized, and their DNA binding, photoactivated DNA cleavage activity, and cytotoxic properties were studied [Fe = (eta(5)-C5H4)Fe-11(eta(5)-C5H5)]. Complexes 1 and 3 as hexafluorophosphate salts were structurally characterized by X-ray crystallography. Molecular structures of [Cu(Fc-tpy)(phen)](PF6)(2) (1a) and [Cu(Fc-tpy)(dppz)](PF6)(2)center dot MeCN (3a center dot MeCN) show a distorted square-pyramidal geometry at copper(II), with the Fc-tpy ligand and the phenanthroline base showing respective tridentate and bidentate binding modes. The phenanthroline base exhibits axial-equatorial bonding, while the Fc-tpy ligand binds at the basal plane. The complexes showed quasi-reversible cyclic voltammetric responses near 0.45 and -0.3 V vs SCE in aqueous DMF-0.1 M KCl assignable to the Fc(+)-Fc and Cu(II) Cu(1) redox couples, respectively. The complexes bind to DNA, giving K-b values of 1.4 x 10(4) to 5.6 x 10(5) M-1 in the order 4 similar to 3 > 2 > 1. Thermal denaturation and viscometric titration data suggest groove and/or partial intercalative mode of DNA binding of the complexes. The complexes showed chemical nuclease activity in the presence of 3-mercaptopropionic acid (0.5 mM) or H2O2 (0.25 mM). Complexes 2-4 showed plasmid DNA cleavage activity in visible light, forming (OH)-O-center dot radicals. The Fc-tpy complex 3 showed better DNA photocleavage activity than its Ph-tpy analogue. The ferrocene moiety in the dppz complex 3 makes it more photocytotoxic than the Ph-tpy analogue 4 in HeLa cells.
Resumo:
The kinetics of the vapor phase oxidation of p-xylene over ferric molybdate catalyst were studied in an isothermal, differential, tubular flow reactor in the temperature range of 360 to 420° C. The major product obtained was p-tolualdehyde with small amounts of maleic anhydride and p-toluic acid. No terephthalic acid or CO2 were observed. The reaction rate data collected fit the redox model given by Equation 1. The values of activation energies Ex, Eo and frequency factors Ax, Ao obtained are 72, 63 kJ/mol and 0.64, 2.89 m3/kg catalyst s respectively. The reaction mechanism was established by studying the oxidation of p-tolualdehyde, toluic and terephthalic acids. It is concluded that the reaction follows a parallel-consecutive scheme. On a étudié la cinétique de l'oxydation, en phase gazeuse, du para-xylène sur un catalyseur consistant en molybdate ferrique; cette oxydation s'est faite dans un réacteur à écoulement tubulaire, isothermique et différentiel, dans une échelle de températures comprises entre 360°C et 420°C. Le produit principal obtenu a été le para-tolualdéhyde; on a aussi trouvé de faibles quantités d'anhydride maléique et d'acide para-toluique, mais on n'a pas noté la présence d'acide téréphtalique ni d'anhydride carbonique (CO2). Les résultats obtenus en ce qui a trait à la vitesse de réaction concordent bien avec les données du modèle redox indiquées par l'équation 1. Les valeurs des énergies d'activation Ex et Eo ainsi que des facteurs de fréquence Ax et Ao obtenus sont respectivement 72 et 63 kilojoules/mol. et 0.64 × 103 et 2.89 m3/kg de catalyseur. On a établi le mécanisme de la réaction en étudiant l'oxydation du para-tolualdéhyde et des acides toluique et téréphtalique. On conclut que la réaction se fait d'une manière parallèle et consécutive.