141 resultados para Rapid Identification
Resumo:
Tetragonal ZrO2 was synthesized by the solution combustion technique using glycine as the fuel. The compound was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and BET surface area analysis. The ability of this compound to adsorb dyes was investigated, and the compound had a higher adsorption capacity than commercially activated carbon. Infrared spectroscopic observations were used to determine the various interactions and the groups responsible for the adsorption activity of the compound. The effects of the initial concentration of the dye, temperature, adsorbent concentration, and pH of the solution were studied. The kinetics of adsorption was described as a first-order process, and the relative magnitudes of internal and external mass transfer processes were determined. The equilibrium adsorption was also determined and modeled by a composite Langmuir-Freundlich isotherm.
Resumo:
A fast, efficient and novel method of preparation of hydroxyapatite using microwaves has been described.
Resumo:
Niobium pentoxide thin films have been deposited on silicon and platinum-coated silicon substrates by reactive magnetron sputtering. The as-deposited films were amorphous and showed good electrical properties in terms of a dielectric permittivity of about 30, and leakage current density of 10(-6) A cm(-2) al a field of 120 kV cm(-1). A rapid thermal annealing process at 800 degrees C further increased the dielectric constant to 90 and increased the leakage current density to 5 x 10(-6) A cm(-2). The current-voltage characteristics observed at low and high fields suggested a combination of phenomena at different regimes of applied electric field. The capacitance-voltage characteristics performed in the metal-insulator-semiconductor configuration indicated good electronic interfaces with a nominal trap density of 4.5 x 10(12) cm(-2) eV(-1), which is consistent with the behavior observed with conventional dielectrics such as SiO2 on silicon surfaces.
Resumo:
Rapid thermal processed thin films of reactively sputtered tantalum pentoxide Ta2O5 thin films have been deposited on silicon and platinum coated silicon substrates by reactive magnetron sputtering. The as-deposited films were amorphous and showed good electrical properties in terms of a dielectric permittivity of about 24 and leakage current density of 9 x 10(-8) A cm(-2). A rapid thermal annealing process at temperatures above 700 degrees C crystallized the films, increased the dielectric relative permittivity, and decreased the leakage current. The dielectric constant for a film rapidly annealed at 850 degrees C increased to 45 and its leakage current density lowered to 2 x 10(-8) A cm(-2). The dielectric measurements in the MIS configuration showed that Ta2O5 might be used as a dielectric material instead of SiO2 or Si3N4 for integrated devices. The current voltage characteristics observed at low and high fields suggested different conduction mechanisms.
Resumo:
After briefly outlining the recent developments in hybrid rockets, the work carried out by the author on self-igniting (hypergolic) solid fuel-liquid oxidiser systems has been reviewed. A major aspect relates to the solid derivatives of hydrazines, which have been conceived as fuels for hybrid rockets. Many of these N-N bonded compounds ignite readily, with very short ignition delays, on coming into contact with liquid oxidisers, like HNO3 and N2O4. The ignition characteristics have been examined as a function of the nature of the functional group in the fuel molecule, in an attempt to establish a basis for the hypergolic ignition in terms of chemical reactivity of the fuel-oxidiser combination. Important chemical reactions occurring in the pre-ignition stage have been identified by examining the quenched reaction products. Hybrid systems exhibiting synergistic hypergolicity in the presence of metal powders have been investigated. An estimation of the rocket performance parameters, experimental determination of the heats of combustion in HNO3, thermal decomposition characteristics, temperature profile by thin film thermometry and and product identification by the rapid scan FT-IR, are among the other relevant studies made on these systems. A significant recent development has been the synthesis of new N-N bonded viscous binders, capable of retaining the hypergolicity of the fuel powders embedded therein as well as providing the required mechanical strength to the grain. Several of these resins have been characterised. Metallised fuel composites of these resins having high loading of magnesium are found to have short ignition delays and high performance parameters.