197 resultados para Pt(111) electrodes
Resumo:
A novel method is proposed for fracture toughness determination of graded microstructurally complex (Pt,Ni)Al bond coats using edge-notched doubly clamped beams subjected to bending. Micron-scale beams are machined using the focused ion beam and loaded in bending under a nanoindenter. Failure loads gathered from the pop-ins in the load-displacement curves combined with XFEM analysis are used to calculate K-c at individual zones, free from substrate effects. The testing technique and sources of errors in measurement are described and possible micromechanisms of fracture in such heterogeneous coatings discussed.
Resumo:
Ce0.88Si0.1Pt0.02O2-d and Ce0.88Al0.1Pt0.02O2-d catalysts were synthesized by using a low-temperature sonochemical method and characterized by using XRD, TEM, XPS, FTIR, and BET surface analyzer. The catalytic activities of these compounds were investigated for the watergas shift reaction in the temperature range of 140-440 degrees C. The substitution of Si in Ce0.98Pt0.02O2-d increased the releasing capacity of lattice oxygen, whereas the substitution of Al decreased the reducibility of Ce0.98Pt0.02O2-d, as evidenced by hydrogen temperature-programmed reduction studies. However, both the catalysts showed a considerable improvement in terms of activity and stability compared to Ce0.98Pt0.02O2-d. The combined activity measurement and characterization results suggest that the increase in the oxygen vacancy, which acts as a dissociation center for water, is the primary reason for the improvement in the activity of modified Ce0.98Pt0.02O2-d. Both the catalysts are 100?% selective toward H2 production, and approximately 99?% conversion of CO to CO2 was observed at 260 and 270 degrees C for Ce0.88Si0.1Pt0.02O2-d and Ce0.88Al0.1Pt0.02O2-d, respectively. These catalysts do not deactivate during the daily startup/shutdown operations and are sustainable even after prolonged reaction. Notably, these catalysts do not require any pretreatment or activation during startup/shutdown operations.
Resumo:
2 + 4] self-assembly of a pyrene-functionalized Pt-8(II) tetragonal prism (2) is achieved using a newly designed star-shaped organometallic acceptor (1) in combination with an amide-based ``clip'' donor (L). The propensity of this prism (2) as a selective sensor for nitroaromatics (2,4-dinitrotoluene, 1,3,5-trinitrotoluene, and picric acid), which are the chemical constituents of many commercial explosives, has been examined.
Resumo:
The electrochemical profiles of exfoliated graphite electrodes (EG) and glassy carbon electrodes (GCE) were recorded using cyclic voltammetry and square wave voltammetry in the presence of various supporting electrolytes and Fe(CN)(6)](3-/4-), Ru(NH3)(6)](2+/3+), ferrocene redox probes. In the supporting electrolytes (KCl, H2SO4, NaOH, tetrabutylammoniumtetraflouroborate, phosphate buffers), the potential windows of EG were found in some cases to be about 200 mV larger than that of GCE. The electroactive surface area of EG was estimated to be 19.5 % larger than the GCE which resulted in higher peak currents on the EG electrode. Furthermore, EG was modified with various nanomaterials such as poly (propylene imine) dendrimer, gold nanoparticles, and dendrimer-gold nanoparticles composite. The morphologies of the modified electrodes were studied using scanning electron microscopy and their electrochemical reactivities in the three redox probes were investigated. The current and the reversibility of redox probes were enhanced with the presence of modifiers in different degrees with dendrimer and gold nanoparticles having a favorable edge.
Resumo:
A 12 V Substrate-Integrated PbO2-Activated Carbon hybrid ultracapacitor (SI-PbO2-AC HUCs) with silica-gel sulfuric acid electrolyte is developed and performance tested. The performance of the silica-gel based hybrid ultracapacitor is compared with flooded and AGM-based HUCs. These HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area activated carbon with dense graphite-sheet substrate as negative electrodes. 12 V SI-PbO2-AC HUCs with flooded, AGM and gel electrolytes are found to have capacitance values of 308 F, 184 F, and 269 F at C-rate and can be pulse charged and discharged for 100,000 cycles with only a nominal decrease in their capacitance values. The best performance is exhibited by gel-electrolyte HUCs.
Resumo:
Coordination self-assembly of a series of tetranuclear Pt(II) macrocycles containing an organometallic backbone incorporating ethynyl functionality is presented. The 1 : 1 combination of a linear acceptor 1,4-bistrans-Pt(PEt3)(2)(NO3)(ethynyl)]benzene (1) with three different dipyridyl donor `clips' (L-a-L-c) afforded three 2 + 2] self-assembled Pt-4(II) macrocycles (2a-2c) in quantitative yields, respectively L-a = 1,3-bis-(3-pyridyl)isothalamide; L-b = 1,3-bis(3-pyridyl)ethynylbenzene; L-c = 1,8-bis(4-pyridyl)ethynylanthracene]. These macrocycles were characterized by multinuclear NMR (H-1 and P-31); ESI-MS spectroscopy and the molecular structures of 2a and 2b were established by single crystal X-ray diffraction analysis. These macrocycles (2a-2c) are fluorescent in nature. The amide functionalized macrocycle 2a is used as a receptor to check the binding affinity of aliphatic acyclic dicarboxylic acids. Such binding affinity is examined using fluorescence and UV-Vis spectroscopic methods. A solution state fluorescence study showed that macrocycle 2a selectively binds (K-SV = 1.4 x 10(4) M-1) maleic acid by subsequent enhancement in emission intensity. Other aliphatic dicarboxylic acids such as fumaric, succinic, adipic, mesaconic and itaconic acids caused no change in the emission spectra; thereby demonstrating its potential use as a macrocyclic receptor in distinction of maleic acid from other aliphatic dicarboxylic acids.
Resumo:
We demonstrate the activity of Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalysts towards the CO oxidation and water gas shift (VMS) reaction. Both the catalysts were synthesized in the nano crystalline form by a low temperature sonochemical method and characterized by different techniques such as XRD, FT-Raman, TEM, FT-IR, XPS and BET surface analyzer. H-2-TPR results corroborate the intimate contact between noble metal and Fe ions in the both catalysts that facilitates the reducibility of the support. In the absence of feed CO2 and H-2, nearly 100% conversion of CO to CO2 with 100% H-2 selectivity was observed at 300 degrees C and 260 degrees C respectively, for Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalyst. However, the catalytic performance of Ti0.73Pd0.02Fe0.25O2-delta deteriorates in the presence of feed CO2 and H-2. The change in the support reducibility is the primary reason for the significant increase in the activity for CO oxidation and WGS reaction. The effect of Fe addition was more significant in Ti0.73Pd0.02Fe0.25O2-delta than Ti0.84Pt0.01Fe0.15O2-delta. Based on the spectroscopic evidences and surface phenomena, a hybrid reaction scheme utilizing both surface hydroxyl groups and the lattice oxygen was hypothesized over these catalysts for WGS reaction. The mechanisms based on the formate and redox pathway were used to fit the ldnetic data. The analysis of experimental data shows the redox mechanism is the dominant pathway over these catalysts. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
We report the room temperature cell performance of alkaline direct methanol fuel cells (ADMFCs) with nitrogen-doped carbon nanotubes (NCNTs) as cathode materials. NCNTs show excellent oxygen reduction reaction activity and methanol tolerance in alkaline medium. The open-circuit-voltage (OCV) as well as the power density of ADMFCs first increases and then saturates with NCNT loading. Similarly, the OCV initially increases and reaches saturation with the increase in the concentration of methanol feed stock. Overall, NCNTs exhibit excellent catalytic activity and stability with respect to Pt based cathodes.
Resumo:
The tensile behavior of a high activity stand-alone Pt-aluminide (PtAl) bond coat was evaluated by the micro-tensile test method at various temperatures (room temperature to 1100 degrees C) and strain rates (10(-5) s(-1)-10(-1) s(-1).) At all strain rates, the stress strain behavior of the stand-alone coating was significantly affected by the variation in temperature. The stress strain response was linear, indicating brittle behavior, at temperatures below the brittle ductile transition temperature (BDTT). The coating exhibited appreciable ductility (up to 2%) above the BDTT. The strength (both yield stress and ultimate tensile strength) of the coating decreased and its ductility increased with increasing temperature above the BDTT. The tensile behavior of the coating was sensitive to strain rate in the ductile regime, with its strength increasing with increasing strain rate at any given temperature. The BDTT of the coating was found to increase with increasing with increasing strain rate. The coating exhibited two distinct mechanisms of deformation above the BDTT. The transition temperature for the change of deformation mechanism also increased with increasing strain rate. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A composite of mesoporous carbon (MC) with poly(3,4-ethylenedioxythiophene) (PEDOT) is studied as catalyst support for platinum nanoparticles. The durability of commercial Pt/carbon and Pt/MC-PEDOT as cathode catalyst is investigated by invoking air-fuel boundary at the anode side so as to foster carbon corrosion at the cathode side of a polymer electrolyte fuel cell (PEFC). Pt/MC-PEDOT shows higher resistance to carbon corrosion in relation to Pt/C. Electrochemical techniques such as cyclic voltammetry (CV) and impedance measurements are used to evaluate the extent of degradation in the catalyst layer. It is surmised that the resistance of MC-PEDOT as catalyst support toward electrochemical oxidation makes Pt/MC-PEDOT a suitable and stable cathode catalyst for PEFCs.
Resumo:
Porous titanium oxide-carbon hybrid nanostructure (TiO2-C) with a specific surface area of 350 m(2)/g and an average pore-radius of 21 center dot 8 is synthesized via supramolecular self-assembly with an in situ crystallization process. Subsequently, TiO2-C supported Pt-Ru electro-catalyst (Pt-Ru/TiO2-C) is obtained and investigated as an anode catalyst for direct methanol fuel cells (DMFCs). X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM) have been employed to evaluate the crystalline nature and the structural properties of TiO2-C. TEM images reveal uniform distribution of Pt-Ru nanoparticles (d (Pt -aEuro parts per thousand Ru) = 1 center dot 5-3 center dot 5 nm) on TiO2-C. Methanol oxidation and accelerated durability studies on Pt-Ru/TiO2-C exhibit enhanced catalytic activity and durability compared to carbon-supported Pt-Ru. DMFC employing Pt-Ru/TiO2-C as an anode catalyst delivers a peak-power density of 91 mW/cm(2) at 65 A degrees C as compared to the peak-power density of 60 mW/cm(2) obtained for the DMFC with carbon-supported Pt-Ru anode catalyst operating under similar conditions.
Resumo:
Results of a high resolution photoemission and electrochemistry study of Se adsorption Au(111) and Ag(111) surfaces performed by immersion of pristine samples into an aqeuous solution of Na2Se are presented. Cyclic voltammetry on Au shows formation of selenium adsorbed species and the structures observed in reductive desorption are to the atomic and polymeric species observed in XPS. In the case of Au(111) XPS spectra in the Se(3d) region indeed show two main features attributed to Se chemisorbed atomically and polymeric Se-8 features.' Smaller structures due to other types of Se conformations were also observed. The Au(4f) peak line, shape does not show core level, shifts: indicative of Au selenide formation the case of silver, XPS spectra for the Ag(3d) show a broadening of the peak and a deconvolution into Ag-B bulk like Ag-Se components shows that the Ag-Se is located at a lower binding energy, an effect similar to oxidation and sulfidation of Ag. The Se(3d) XPS spectrum is found to be substantially different from the Au case and dominated by atomic type Se due to the selenide, though a smaller intensity Se structure at an energy similar to the Se-8 structure for Au is also observed. Changes in the valence band region. related to Se adsorption are reported.
Resumo:
Diffusion couple experiments are conducted in Co-Ni-Pt system at 1200 degrees C and in Co-Ni-Fe system at 1150 degrees C, by coupling binary alloys with the third element. Uphill diffusion is observed for both Co and Ni in Pt rich corner of the Co-Ni-Pt system, whereas in the Co-Ni-Fe system, it is observed for Co. Main and cross interdiffusion coefficients are calculated at the composition of intersection of two independent diffusion profiles. In both the systems, the main interdiffusion coefficients are positive over the whole composition range and the cross interdiffusion coefficients show both positive and negative values at different regions. Hardness measured by performing the nanoindentations on diffusion couples of both the systems shows the higher values at intermediate compositions.
Resumo:
Interdiffusion, intrinsic, tracer and impurity diffusion coefficients are calculated in the Pd-Pt system. Interdiffusion coefficients are more or less insensitive to composition change. Activation energy varies in the range of 324-353 kJ/mol. Impurity diffusion coefficients calculated in this study and available tracer diffusion coefficients in pure elements indicate that Pd has higher diffusion rate compared to Pt in pure Pd, whereas, both the elements have similar diffusion rates in Pt. Kirkendall marker experiments indicate that Pd has much higher diffusion rate in Pd3.5at.%Pt compared to Pt.
Resumo:
We have analyzed the characteristics of electrodes made of TiO2 nanotubes, microspheres and commercially available nanoparticles for dye sensitized solar cell. The morphology of the electrodes and the formation of aggregates have been analyzed by scanning electron microscopy and surface profiling technique. The concentration of Ti3+ type impurity state on the surface of these electrodes is quantified by X-ray photoelectron spectroscopy. Micro structural properties have been characterized by Brunauer, Emmett and Teller method The optical properties of the electrodes such as band gap energy, the type of band formation and the diffuse reflectance are evaluated by UV-Visible spectroscopy. The photovoltaic characteristics of dye solar cell made of these electrodes have been evaluated and it is found that the characteristics of the TiO2 film alone can alter the overall conversion efficiency to a great extent. Additional analysis using electrochemical impedance spectroscopy has been carried out to probe the electron transport properties and charge collection efficiency of these electrodes.