223 resultados para Poly (ether-ether-ketone) (PEEK)
Resumo:
Poly(ADP-ribosyl)ation of nuclear proteins was several-fold higher in the pachytene spermatocytes than in the premeiotic germ cells of the rat. Among the histones of the pachytene nucleus, histone subtypes H2A, H1 and H3 were poly(ADP-ribosyl)ated. Based on the immunoaffinity fractionation procedure of Malik, Miwa, Sugimara & Smulson [(1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2554-2558] we have fractionated DNAase-II-solubilized chromatin into poly(ADP-ribosyl)ated chromatin (PAC) and non-poly(ADP-ribosyl)ated chromatin (non-PAC) domains on an anti-[poly(ADP-ribose)] IgG affinity matrix. Approx. 2.5% of the pachytene chromatin represented the PAC domains. A significant amount of [alpha-32P]dATP-labelled pachytene chromatin (labelled in vitro) was bound to the affinity matrix. The DNA of pachytene PAC domains had internal strand breaks, significant length of gaps and ligatable ends, namely 5'-phosphoryl and 3'-hydroxyl termini. On the other hand, the PAC domains from 18 h regenerating liver had very few gaps, if any. The presence of gaps in the pachytene PAC DNA was also evident from thermal denaturation studies. Although many of the polypeptides were common to the PAC domains of both pachytene and regenerating liver, the DNA sequences associated with these domains were quite different. A 20 kDa protein and the testis-specific histone H1t were selectively enriched in the pachytene PAC domains. The pachytene PAC domains also contained approx. 10% of the messenger coding sequences present in the DNAase-II-solubilized chromatin. The pachytene PAC domains, therefore, may represent highly enriched DNA-repair domains of the pachytene nucleus.
Resumo:
Graft copolymerization of poly(aniline) (PANI) onto poly(propylene) (PP) fibre was carried out in aqueous acidic medium under nitrogen atmosphere by using peroxomonosulphate (PMS) as a lone initiator. The non-conducting fibre was now made into a conducting one through the chemical grafting of PANI units onto the PP fibre backbone. The content of PANI in the backbone was found to vary while varying the [ANI], [PMS] and amount of PP fibre. Various graft parameters were evaluated. The chemical grafting of PANI onto PP fibre was confirmed by conductivity measurements.
Resumo:
Thermal degradation of copolyurethanes based on hydroxyl terminated polybutadiene (HTPB) and poly(12-hydroxy stearic acid-co-TMP) ester polyol (PEP) with varying compositions has been studied by thermo-gravimetric and pyrolysis-GC techniques. The copolyurethanes were found to decompose in multiple stages and the kinetic parameters were found to be dependent on the method of their evaluation. The activation energy for the initial stage of decomposition was found to increase, and for the main stage decreases with the increase in PEP content. The pyrolysis-GC studies on the ammonium perchlorate filled copolyurethanes (solid propellants) showed that the major products during the pyrolysis were C-2, C-3 hydrocarbons and butadiene. The amount of C-2 fraction in the pyrolyslate increased with solid loading, as well as with the HTPB content in the copolyurethanes. A linear relationship apparently exists between the amount of C-2 fraction and the burn rates of the solid propellants. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of four phenoxy compounds [2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid, 4-chlorophenoxyacetic acid 2-(dimethylamino)ethyl ester (centrophenoxine), and 4-chlorophenoxy ethyl 2-(dimethylamino) ethyl ether (neophenoxine)] on lipid metabolism in groundnut (Arachis hypogaea) leaves was investigated under nonphotosynthetic conditions. In experiments with leaf disks, the uptake of [1-14C]acetate, [32P]orthophosphate, [35S]sulfate and [methyl-14C]choline was substantially inhibited by all the phenoxy compounds except neophenoxine. When the incorporation of these precursors into lipids was measured and expressed as percentage of total uptake, there was significant inhibition of incorporation of [1-14C]acetate and [32P]orthophosphate into lipids by all the compounds except neophenoxine. The incorporation of [methyl-14C]choline was unaffected by all except centrophenoxine which showed stastically significant stimulation. [35S]Sulfate incorporation into lipids was markedly inhibited only by centrophenoxine. The fatty acid synthetase of isolated chloroplasts assayed in the absence of light was inhibited 20–50% by the phenoxy compounds at 0.5 mM concentration. This inhibition showed a dependence on time of preincubation with the herbicide suggesting an interaction with the enzyme. It was, however, reversible and excess substrate did not prevent the inhibition, suggesting that the herbicide interaction may not be at the active site. sn-Glycerol-3-phosphate acyltransferase in the chloroplast and microsomal fractions was inhibited by 2,4-D while the phosphatidic acid phosphatase was insensitive to all the phenoxy compounds. It is concluded that phenoxy compounds affect precursor uptake, their incorporation into lipids, and the chloroplast fatty acid synthetase. The free acids were the most potent compounds while the ester (centrophenoxine) was less effective and the ether (neophenoxine) was completely ineffective in their influence on lipid metabolism.
Resumo:
R-(+)-Pulegone was administered orally to rats and the urinary metabolites were investigated. Six metabolites were isolated and purified using column and thin layer chromatographic techniques. Metabolites were identified by i.r., n.m.r. and mass spectral analyses.The neutral metabolites isolated from urine of rats treated with pulegone (I) were: pulegol (II), 2-hydroxy-2(1'-hydroxy-1'-methylethyl)-5-methylcyclohexanone (III), 3,6-dimethyl-7a-hydroxy-5,6,7,7a-tetrahydro-2(4H)-benzofuranone (V) and menthofuran (VII). Metabolites II and III were also excreted in conjugated form.Acidic metabolites isolated from urine of rats treated with pulegone (I) were: 5-methyl-2(1'-methyl-1'-carboxyethylidene)cyclohexanone (IV) and 5-methyl-5-hydroxy-2(1'hydroxy-'-carboxyethyl)cyclohexanone (VI).
Resumo:
We report preliminary experiments on the ternary-liquid mixture, methyl ethyl ketone (MEK)+water (W)+secondary butyl alcohol (sBA)-a promising system for the realization of the quadruple critical point (QCP). The unusual tunnel-shaped phase diagram shown by this system is characterized and visualized by us in the form of a prismatic phase diagram. Light-scattering experiments reveal that (MEK+W+sBA) shows near three-dimensional-Ising type of critical behavior near the lower critical solution temperatures, with the susceptibility exponent (gamma) in the range of 1.217 <=gamma <= 1.246. The correlation length amplitudes (xi(o)) and the critical exponent (nu) of the correlation length (xi) are in the ranges of 3.536 <=xi(o)<= 4.611 A and 0.619 <=nu <= 0.633, respectively. An analysis in terms of the effective susceptibility exponent (gamma(eff)) shows that the critical behavior is of the Ising type for MEK concentrations in the ranges of 0.1000 <= X <= 0.1250 and X >= 0.3000. But, for the intermediate range of 0.1750 <= X < 0.3000, the system shows a tendency towards mean-field type of critical behavior. The advantages of the system (MEK+W+sBA) over the system (3-methylpyridine+water+heavy water+potassium Iodide) for the realization of a QCP are outlined.
Resumo:
A new thiosemicarbazone, HL is synthesized from di-2-pyridyl ketone and 4-phenyl-3-thiosemicarbazide and structurally and spectrochemically characterized. H-1 NMR, C-13 NMR, COSY, HMQC and IR spectra of the compound are studied and the proton magnetic resonance spectrum reveals some unprecedented observations. The thione form is predominant in the solid state, as supported by the crystal structure and IR data, while a thiol-thione equilibrium is proposed in the solution state by NMR studies. The compound crystallizes into a monoclinic lattice with space group C2/c and the ZE conformation is exhibited by the thiosemicarbazone. Intra- and intermolecular hydrogen-bonding interactions give rise to a two-dimensional packing in the crystal lattice
Resumo:
A new thiosemicarbazone, HL is synthesized from di-2-pyridyl ketone and 4-phenyl-3-thiosemicarbazide and structurally and spectrochemically characterized. H-1 NMR, C-13 NMR, COSY, HMQC and IR spectra of the compound are studied and the proton magnetic resonance spectrum reveals some unprecedented observations. The thione form is predominant in the solid state, as supported by the crystal structure and IR data, while a thiol-thione equilibrium is proposed in the solution state by NMR studies. The compound crystallizes into a monoclinic lattice with space group C2/c and the ZE conformation is exhibited by the thiosemicarbazone. Intra- and intermolecular hydrogen-bonding interactions give rise to a two-dimensional packing in the crystal lattice. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The poly(vinylidene fluoride)/CaCu3Ti4O12 (CCTO) nanocrystal composite films (thickness approximate to 85 mu m) with relatively high dielectric permittivity (90 at 100 Hz) were prepared by the solution casting followed by spin coating technique. The structural, the microstructural and the dielectric properties of the composites were studied using X-ray diffraction, Scanning Electron Microscope, and Impedance analyzer respectively. The effective dielectric permittivity (e(eff)) of the composite increased with increase in the volume fraction of CCTO at all the frequencies (100 Hz to 1 MHz) under investigation. The room temperature dielectric permittivity which is around 90 at 100 Hz, has increased to about 290 at 125 degrees C (100 Hz). These results may be exploited in the development of high energy density capacitors.
Resumo:
The current density-voltage (J-V) characteristics of poly(3-methylthiophene) devices show a negative differential resistance (NDR) at room temperature with a large peak to valley current ratio (similar to 507). This NDR can be tuned by two orders of magnitude by controlling the carrier density due to the variation of the space-charge region in the device. The temperature and scan rate dependent J-V measurements infer that the NDR is mainly driven by the trapping and de-trapping of carriers. The photo-generation of carriers is observed to reduce the NDR effect.
Resumo:
Biochemical, histopathological and ultrastructural changes occurring at different time points after intraperitoneal administration of a single dose of pulegone (300 mg/kg) were studied. Significant decreases in the level of liver microsomal cytochrome P-450 (67%), heme (37%), aminopyrine N-demethylase (60%) and glucose-6-phosphatase (58%), were noticed 24 hr after pulegone treatment. Alanine amino transferase (ALT) levels increased in a time dependent manner, following exposure of rats to pulegone. Light microscopic studies of liver tissues showed dilation of central veins and distention of sinusoidal spaces 6 hr after pulegone treatment. Initial centrilobular necrosis was noticed at 12 hr. Centrilobular necrosis became severe at 18 hr and nuclear changes included karyorrhexis and karyolysis. Midzonal and periportal degenerative changes in addition to centrilobular necrosis was observed 24 hr after pulegone administration. Electron microscopic changes showed severe degeneration of endoplasmic reticulum, swelling of mitochondria and nuclear changes, 24 hr after administration of pulegone. The time course profile of the hepatocytes after treatment with pulegone indicates that endoplasmic reticulum is the organelle most affected, following which other degenerative changes occur ultimately leading to cell death.
Resumo:
Significant destruction (68%) of liver microsomal cytochrome P-450 and homogeneous cytochrome P-450 purified from PB-treated rats is noticed upon incubation with 10 mM pulegone at 37-degrees-C for 30 min. There is also a concomitant loss of heme. The destructive phenomenon does not require metabolic activation of pulegone. The destruction of purified cytochrome P-450 is time-dependent and saturable. Structure-activity studies suggest that an alpha-isopropylidine ketone unit with a methyl positioned para to the isopropylidine group as in pulegone is necessary for the in vitro destruction of cytochrome P-450. SKF-525A at a concentration of 4-mM obliterates the destruction of cytochrome P-450 by pulegone. Experiments with C-14-pulegone suggest that pulegone or its rearranged product binds covalently to the prosthetic heme of cytochrome P-450.
Resumo:
We report experimental studies which confirm our prediction, namely that the ordered structure of poly(hydroxypro1ine) in solution corresponds to a left-handed helical structure with intrachain hydrogen bonds. The CD studies show that the poly(hydroxypro1ine) molecule has essentially the same conformation in aqueous solution and in the film obtained subsequently by evaporation. X-ray diffraction patterns of the sample in this form (B form) have been recorded at different relative humidities. The patterns recorded at relative humidities over 66% can be interpreted in terms of a helical structure with intrachain hydrogen bonds. These results lead us to conclude that the ordered conformation of poly(hydroxypro1ine) in solution is form B and not form A. This offers a simple explanation for the greater stability of the poly(hydroxypro1ine) helix in solution as compared to the poly(pro1ine) form I1 helix and also for the absence of mutarotation for poly(hydroxypro1ine).