400 resultados para POLARIZED WAVE GENERATION
Resumo:
An explicit representation of an analytical solution to the problem of decay of a plane shock wave of arbitrary strength is proposed. The solution satisfies the basic equations exactly. The approximation lies in the (approximate) satisfaction of two of the Rankine-Hugoniot conditions. The error incurred is shown to be very small even for strong shocks. This solution analyses the interaction of a shock of arbitrary strength with a centred simple wave overtaking it, and describes a complete history of decay with a remarkable accuracy even for strong shocks. For a weak shock, the limiting law of motion obtained from the solution is shown to be in complete agreement with the Friedrichs theory. The propagation law of the non-uniform shock wave is determined, and the equations for shock and particle paths in the (x, t)-plane are obtained. The analytic solution presented here is uniformly valid for the entire flow field behind the decaying shock wave.
Resumo:
The interface between two polar semiconductors can support three types of phonon-plasmon-polariton modes propagating in three well-defined frequency windows ??1?[min(?1,?3),?R1], ??2?[max(?2,?4),?R2], and ??3?[min(?2,?4),?R3]. The limiting frequencies ?1,2,3,4 are defined by ?1(?)=0, ?2(?)=0, and ?R1,2,3 by ?1(?)+?2(?)=0, where ?i(?) are dielectric functions of the two media with i=1,2. The dispersion, decay distances, and polarization of the three modes are discussed. The variation of the limiting frequencies with the interface plasma parameter ???p22/?p12 reveals an interesting feature in the dispersion characteristics of these modes. For the interfaces for which the bulk coupled phonon-plasmon frequencies of medium 1 are greater than the LO frequency or are less than the TO frequency of medium 2, there exist two values of ?=?1 and ?2(1) for which ??1 and ??3 are zero, respectively. Hence, for these values of ?, the two interface modes defined by ??1 and ??3 propagate with constant frequencies equal to the bulk coupled phonon-plasmon frequencies of medium 1, i.e., without showing any dispersion.
Resumo:
We calculate the string tension and 0++ and 2++ glueball masses in pure gauge QCD using an improved lattice action. We compare various smearing methods, and find that the best glueball signal is obtained using smeared Wilson loops of a size of about 0.5 fm. Our results for mass ratios m0++/√σ=3.5(3) and m2++/m0++=1.6(2) are consistent with those computed with the simple plaquette action.
Resumo:
A systematic structure analysis of the correlation functions of statistical quantum optics is carried out. From a suitably defined auxiliary two‐point function we are able to identify the excited modes in the wave field. The relative simplicity of the higher order correlation functions emerge as a byproduct and the conditions under which these are made pure are derived. These results depend in a crucial manner on the notion of coherence indices and of unimodular coherence indices. A new class of approximate expressions for the density operator of a statistical wave field is worked out based on discrete characteristic sets. These are even more economical than the diagonal coherent state representations. An appreciation of the subtleties of quantum theory obtains. Certain implications for the physics of light beams are cited.
Resumo:
Theoretical study of propagation characteristics of VLF electromagnetic waves through an idealised parallel-plane earth-crust waveguide with overburden, experimental verification of some of these characteristics with the aid of a model tank and use of range equation reveal the superiority of radio communication between land and a deeply submerged terminal inside a ocean via the earth-crust over direct link communication through the ocean.
Resumo:
This paper presents a study on the uncertainty in material parameters of wave propagation responses in metallic beam structures. Special effort is made to quantify the effect of uncertainty in the wave propagation responses at high frequencies. Both the modulus of elasticity and the density are considered uncertain. The analysis is performed using a Monte Carlo simulation (MCS) under the spectral finite element method (SEM). The randomness in the material properties is characterized by three different distributions, the normal, Weibull and extreme value distributions. Their effect on wave propagation in beams is investigated. The numerical study shows that the CPU time taken for MCS under SEM is about 48 times less than for MCS under a conventional one-dimensional finite element environment for 50 kHz loading. The numerical results presented investigate effects of material uncertainties on high frequency modes. A study is performed on the usage of different beam theories and their uncertain responses due to dynamic impulse load. These studies show that even for a small coefficient of variation, significant changes in the above parameters are noticed. A number of interesting results are presented, showing the true effects of uncertainty response due to dynamic impulse load.
Resumo:
In this paper a new method is presented for generating earthquake accelerograms which have pre-established response spectra. The non-stationary random nature and other salient features of the accelerograms can be taken care of by the procedure developed. The method leads to a sample spectrum which lies above the given spectrum. The generation of records to suit several spectra simultaneously can also be handled by this approach. The method is detailed first. This is followed by several numerical examples.
Resumo:
We report the absorption spectra, oscillator strengths, ground state and excited state dipole moments, and molecular second order polarizability coefficients (βCT) due to donor—acceptor charge transfer in four trisubstituted ethylenes, namely 1,1-bisdimethylamino-2-nitroethylene, 1,1-bispyrolidino-2-nitroethylene, 1,1-bispiperidino-2-nitroethylene and 1,1-bismorpholino-2-nitroethylene. The results are compared with that of trans-N,N-dimethylamino-nitroethylene, which has a large βCT. The powder second harmonic generation (SHG) intensity of all these molecules is also measured and only 1,1-bispiperidino-2-nitroethylene is found to possess an efficiency of 20% of that of urea under the same conditions. The SHG efficiency of this compound and deficiency in the other molecules in the powdered state is discussed in terms of their arrangements in the unit cell. The crystal structure of the active molecule is also presented and the structure—property relationship is critically examined in all these molecules.
Resumo:
Consideration is given to a 25-foot long Q-band (8 mm) confocal, zoned dielectric lens beam waveguide. Numerical expressions for the axial and radial fields are presented. The experimental set-up consisted of uniformly spaced zoned dielectric lenses, a transmitting horn and a receiving horn. It was found that: (1) the wave beam is reiterated when confocal, zoned dielectric lenses act as phase transformers in place of smooth surfaced transformers in beam waveguides; (2) the axial field is oscillatory near the source and the oscillation persists for about 25 cm from the source; (3) the oscillation disappears after one lens is used; (4) higher order modes with higher attenuation rates die out faster than fundamental modes; (5) phase transformers do not alter beam modes; (6) without any lens the beam cross-section broadens significantly in the Z-direction; (7) with one lens the beam exhibits the reiteration phenomenon; and (8) inserting a second lens on the axial and cross-sectional field distribution shows further the reiteration principle.
Resumo:
Pattern Cognition is looked at from the functional view point. The need for knowledge in synthesizing such patterns is explained and various aspects of knowledge-based pattern generation are highlighted. This approach to the generation of patterns is detailed with a concrete example.