288 resultados para Orthogonal polynomial


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electron spin resonance in undiluted single crystals of cupric acid fluoride has been investigated at room temperature with microwaves of frequency 9625 Mc/s. The anisotropy in the g value has been measured in three orthogonal planes. The principal g values gave gshort parallel = 2.410 ± 0.010, gperpendicular = 2.090 ± 0.010. The linewidth shows anisotropy with orientation. The exchange frequency has been estimated to be approximately 0.08 cm-1.The powdered specimen shows asymmetry in the line shape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the approximate solutions of non-linear autonomous systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on the ultraspherical polynomial expansions. The method is illustrated with examples and the results are compared with the digital and analog computer solutions. There is a close agreement between the analytical and exact results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper deals with a linearization technique in non-linear oscillations for systems which are governed by second-order non-linear ordinary differential equations. The method is based on approximation of the non-linear function by a linear function such that the error is least in the weighted mean square sense. The method has been applied to cubic, sine, hyperbolic sine, and odd polynomial types of non-linearities and the results obtained are more accurate than those given by existing linearization methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the structure of the title compound, C27H39N3O3, each of the (4-oxopiperidin-1-yl)methyl residues adopts a flattened chair conformation (with the N and carbonyl groups being oriented to either,side of the central C-4 plane) and they occupy positions approximatelym orthogonal to the central benzene ring [C-benzene-C-C-methylene-N torsion angles 103.4 (2), -104.4 (3) and 71.9 (3)degrees]; further, two of these residues are oriented to one side of the central benzene ring with the third to the other side. In the crystal packing, supramolecular layers in the ab plane are sustained by C-H center dotcenter dot center dot O interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the approximate analysis of the step response of non-linear nonconservative systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on ultraspherical polynomial expansions. The Krylov-Bogoliubov results are given by a particular set of these polynomials. The method has been applied to study the step response of a cubic spring mass system in presence of viscous, material, quadratic, and mixed types of damping. The approximate results are compared with the digital and analogue computer solutions and a close agreement has been found between the analytical and the exact results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The force constants of H2 and Li2 are evaluated employing their extended Hartree-Fock wavefunctions by a polynomial fit of their force curves. It is suggested that, based on incomplete multiconfiguration Hartree-Fock wavefunctions, force constants calculated from the energy derivatives are numerically more accurate than those obtained from the derivatives of the Hellmann-Feynman forces. It is observed that electrons relax during the nuclear vibrations in such a fashion as to facilitate the nuclear motions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variety of electron diffraction patterns arising from the decagonal phase has been explored using a stereographic analysis for generating the important zone axes as intersection points corresponding to important relvectors. An indexing scheme employing a set of five vectors and an orthogonal vector has been followed. A systematic tilting from the decagonal axis to one of the twofold axes has been adopted to generate a set of experimental diffraction patterns corresponding to the expected patterns from the stereographic analysis with excellent agreement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In uplink orthogonal frequency division multiple access (OFDMA) systems, multiuser interference (MUI) occurs due to different carrier frequency offsets (CFO) of different users at the receiver. In this paper, we present a minimum mean square error (MMSE) based approach to MUI cancellation in uplink OFDMA. We derive a recursion to approach the MMSE solution. We present a structure-wise and performance-wise comparison of this recursive MMSE solution with a linear PIC receiver as well as other detectors recently proposed in the literature. We show that the proposed recursive MMSE solution encompasses several known detectors in the literature as special cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that Alamouti code and, in general, Space-Time Block Codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbolby-symbol decodable (SSD) and are obtainable from unitary matrix representations of Clifford algebras. However, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). In this paper, we obtain SSD codes with unitary weight matrices (but not CON) from matrix representations of Clifford algebras. Moreover, we derive an upper bound on the rate of SSD codes with unitary weight matrices and show that our codes meet this bound. Also, we present conditions on the signal sets which ensure full-diversity and give expressions for the coding gain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Space-Time Block Codes (STBCs) from Complex Orthogonal Designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD); however, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). The class of CIODs have non-unitary weight matrices when written as a Linear Dispersion Code (LDC) proposed by Hassibi and Hochwald, whereas the other class of SSD codes including CODs have unitary weight matrices. In this paper, we construct a large class of SSD codes with nonunitary weight matrices. Also, we show that the class of CIODs is a special class of our construction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two dimensional Optical Orthogonal Codes (OOCs) named Wavelength/Time Multiple-Pulses-per-Row (W/T MPR) codes suitable for use in incoherent fiber-optic code division multiple access (FO-CDMA) networks are reported in [6]. In this paper, we report the construction of W/T MPR codes, using Greedy Algorithm (GA), with distinct 1-D OOCs [1] as the row vectors. We present the W/T MPR codes obtained using the GA. Further, we verify the correlation properties of the generated W/T MPR codes using Matlab.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tanner Graph representation of linear block codes is widely used by iterative decoding algorithms for recovering data transmitted across a noisy communication channel from errors and erasures introduced by the channel. The stopping distance of a Tanner graph T for a binary linear block code C determines the number of erasures correctable using iterative decoding on the Tanner graph T when data is transmitted across a binary erasure channel using the code C. We show that the problem of finding the stopping distance of a Tanner graph is hard to approximate within any positive constant approximation ratio in polynomial time unless P = NP. It is also shown as a consequence that there can be no approximation algorithm for the problem achieving an approximation ratio of 2(log n)(1-epsilon) for any epsilon > 0 unless NP subset of DTIME(n(poly(log n))).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An approximate dynamic programming (ADP) based neurocontroller is developed for a heat transfer application. Heat transfer problem for a fin in a car's electronic module is modeled as a nonlinear distributed parameter (infinite-dimensional) system by taking into account heat loss and generation due to conduction, convection and radiation. A low-order, finite-dimensional lumped parameter model for this problem is obtained by using Galerkin projection and basis functions designed through the 'Proper Orthogonal Decomposition' technique (POD) and the 'snap-shot' solutions. A suboptimal neurocontroller is obtained with a single-network-adaptive-critic (SNAC). Further contribution of this paper is to develop an online robust controller to account for unmodeled dynamics and parametric uncertainties. A weight update rule is presented that guarantees boundedness of the weights and eliminates the need for persistence of excitation (PE) condition to be satisfied. Since, the ADP and neural network based controllers are of fairly general structure, they appear to have the potential to be controller synthesis tools for nonlinear distributed parameter systems especially where it is difficult to obtain an accurate model.