139 resultados para Operation Band


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A short-term real-time operation model with fuzzy state variables is developed for irrigation of multiple crops based on earlier work on long-term steady-state policy. The features of the model that distinguish it from the earlier work are (1) apart from inclusion of fuzziness in reservoir storage and in soil moisture of crops, spatial variations in rainfall and soil moisture of crops are included in the real-time operation model by considering gridded command area with a grid size of 0.5 degrees latitude by 0.5 degrees longitude; (2) the water allocation model and soil moisture balance equations are integrated with the real-time operation model with consideration of ponding water depth for Paddy crop; the model solution specifies reservoir releases for irrigation in a 10-day time period and allocations among the crops on a daily basis at each grid by maintaining soil moisture balance at the end of the day; and (3) the release policy is developed using forecasted daily rainfall data of each grid and is implemented for the current time period using actual 10-day inflow and actual daily rainfall of each grid. The real-time operation model is applied to Bhadra Reservoir in Karnataka, India. The results obtained using the real-time operation model are compared with those of the standard operating policy model. Inclusion of fuzziness in reservoir storage and soil moisture of crops captures hydrologic uncertainties in real time. Considerations of irrigation decisions on a daily basis and the gridded command area result in variations in allocating water to the crops, variations in actual crop evapotranspiration, and variations in soil moisture of the crops on a daily basis for each grid of the command area. (C) 2015 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu2SnS3 thins films were deposited onto In2O3: Sn coated soda lime glass substrates by spin coating technique. The films have been structurally characterized using x-ray Diffraction (XRD) and Atomic Force Microscopy (AFM). The morphology of the films was studied using Field Emission Scanning Electron Microscopy (FESEM). The optical properties of the films were determined using UV-vis-NIR spectrophotometer. The electrical properties were measured using Hall effect measurements. The energy band offsets at the Cu2SnS3/In2O3: Sn interface were calculated using x-ray photoelectron spectroscopy (XPS). The valence band offset was found to be -3.4 +/- 0.24 eV. From the valence band offset value, the conduction band offset is calculated to be -1.95 +/- 0.34 eV. The energy band alignment indicates a type-II misaligned heterostructure formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu2SnS3 thins films were deposited onto In2O3: Sn coated soda lime glass substrates by spin coating technique. The films have been structurally characterized using x-ray Diffraction (XRD) and Atomic Force Microscopy (AFM). The morphology of the films was studied using Field Emission Scanning Electron Microscopy (FESEM). The optical properties of the films were determined using UV-vis-NIR spectrophotometer. The electrical properties were measured using Hall effect measurements. The energy band offsets at the Cu2SnS3/In2O3: Sn interface were calculated using x-ray photoelectron spectroscopy (XPS). The valence band offset was found to be -3.4 +/- 0.24 eV. From the valence band offset value, the conduction band offset is calculated to be -1.95 +/- 0.34 eV. The energy band alignment indicates a type-II misaligned heterostructure formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, analysis of extending the linear modulation range of a zero common-mode voltage (CMV) operated n-level inverter by allowing reduced CMV switching is presented. A new hybrid seven-level inverter topology with a single DC supply is also presented in this study and inverter operation for zero and reduced CMV is analysed. Each phase of the inverter is realised by cascading two three-level flying capacitor inverters with a half-bridge module in between. Proposed inverter topology is operated with zero CMV for modulation index <86% and is operated with a CMV magnitude of V-dc/18 to extend the modulation range up to 96%. Experimental results are presented for zero CMV operation and for reduced common voltage operation to extend the linear modulation range. A capacitor voltage balancing algorithm is designed utilising the pole voltage redundancies of the inverter, which works for every sampling instant to correct the capacitor voltage irrespective of load power factor and modulation index. The capacitor voltage balancing algorithm is tested for different modulation indices and for various transient conditions, to validate the proposed topology.