231 resultados para Multi-robot cooperation
Resumo:
This paper addresses the problem of multiagent search in an unknown environment. The agents are autonomous in nature and are equipped with necessary sensors to carry out the search operation. The uncertainty, or lack of information about the search area is known a priori as a probability density function. The agents are deployed in an optimal way so as to maximize the one step uncertainty reduction. The agents continue to deploy themselves and reduce uncertainty till the uncertainty density is reduced over the search space below a minimum acceptable level. It has been shown, using LaSalle’s invariance principle, that a distributed control law which moves each of the agents towards the centroid of its Voronoi partition, modified by the sensor range leads to single step optimal deployment. This principle is now used to devise search trajectories for the agents. The simulations were carried out in 2D space with saturation on speeds of the agents. The results show that the control strategy per step indeed moves the agents to the respective centroid and the algorithm reduces the uncertainty distribution to the required level within a few steps.
Resumo:
The main idea proposed in this paper is that in a vertically aligned array of short carbon nanotubes (CNTs) grown on a metal substrate, we consider a frequency dependent electric field, so that the mode-specific propagation of phonons, in correspondence with the strained band structure and the dispersion curves, take place. We perform theoretical calculations to validate this idea with a view of optimizing the field emission behavior of the CNT array. This is the first approach of its kind, and is in contrast to the the conventional approach where a DC bias voltage is applied in order to observe field emission. A first set of experimental results presented in this paper gives a clear indication that phonon-assisted control of field emission current in CNT based thin film diode is possible.
Resumo:
This paper reports a self-consistent Poisson-Schr¨odinger scheme including the effects of the piezoelectricity, the spontaneous polarization and the charge density on the electronic states and the quasi-Fermi level energy in wurtzite type semiconductor heterojunction and quantum-laser.
Resumo:
The magnetic properties of iron-filled multi-walled carbon nanotubes dispersed in polystyrene (Fe-MWNT/PS) have been investigated as a function of Fe-MWNT concentration (0.1-15 wt%) from 300 to 10 K. Electron microscopy studies indicate that Fe nanorods (aspect ratio similar to 5) remain trapped at various lengths of MWNT and are thus, prevented from oxidation as well as aggregation. The magnetization versus applied field (M-H loop) data of 0.1 wt% of Fe-MWNTs in PS show an anomalous narrowing at low temperatures which is due to the significant contribution from shape anisotropy of Fe nanorods. The remanence shows a threshold feature at 1 wt%. The enhanced coercivity shows a maximum at 1 wt% due to the dominant dipolar interactions among Fe nanorods. Also the squareness ratio shows a maximum at 1 wt%.
Resumo:
Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs) containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1) domains, while the membrane-distal (D2) domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR) and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A). While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.
Active Vibration Suppression of One-dimensional Nonlinear Structures Using Optimal Dynamic Inversion
Resumo:
A flexible robot arm can be modeled as an Euler-Bernoulli beam which are infinite degrees of freedom (DOF) system. Proper control is needed to track the desired motion of a robotic arm. The infinite number of DOF of beams are reduced to finite number for controller implementation, which brings in error (due to their distributed nature). Therefore, to represent reality better distributed parameter systems (DPS) should be controlled using the systems partial differential equation (PDE) directly. In this paper, we propose to use a recently developed optimal dynamic inversion technique to design a controller to suppress nonlinear vibration of a beam. The method used in this paper determines control forces directly from the PDE model of the system. The formulation has better practical significance, because it leads to a closed form solution of the controller (hence avoids computational issues).
Resumo:
Multi-domain proteins have many advantages with respect to stability and folding inside cells. Here we attempt to understand the intricate relationship between the domain-domain interactions and the stability of domains in isolation. We provide quantitative treatment and proof for prevailing intuitive ideas on the strategies employed by nature to stabilize otherwise unstable domains. We find that domains incapable of independent stability are stabilized by favourable interactions with tethered domains in the multi-domain context. Stability of such folds to exist independently is optimized by evolution. Specific residue mutations in the sites equivalent to inter-domain interface enhance the overall solvation, thereby stabilizing these domain folds independently. A few naturally occurring variants at these sites alter communication between domains and affect stability leading to disease manifestation. Our analysis provides safe guidelines for mutagenesis which have attractive applications in obtaining stable fragments and domain constructs essential for structural studies by crystallography and NMR.
Resumo:
A multiple UAV search and attack mission in a battlefield involves allocating UAVs to different target tasks efficiently. This task allocation becomes difficult when there is no communication among the UAVs and the UAVs sensors have limited range to detect the targets and neighbouring UAVs, and assess target status. In this paper, we propose a team theoretic approach to efficiently allocate UAVs to the targets with the constraint that UAVs do not communicate among themselves and have limited sensor range. We study the performance of team theoretic approach for task allocation on a battle field scenario. The performance obtained through team theory is compared with two other methods, namely, limited sensor range but with communication among all the UAVs, and greedy strategy with limited sensor range and no communication. It is found that the team theoretic strategy performs the best even though it assumes limited sensor range and no communication.
Resumo:
Long running multi-physics coupled parallel applications have gained prominence in recent years. The high computational requirements and long durations of simulations of these applications necessitate the use of multiple systems of a Grid for execution. In this paper, we have built an adaptive middleware framework for execution of long running multi-physics coupled applications across multiple batch systems of a Grid. Our framework, apart from coordinating the executions of the component jobs of an application on different batch systems, also automatically resubmits the jobs multiple times to the batch queues to continue and sustain long running executions. As the set of active batch systems available for execution changes, our framework performs migration and rescheduling of components using a robust rescheduling decision algorithm. We have used our framework for improving the application throughput of a foremost long running multi-component application for climate modeling, the Community Climate System Model (CCSM). Our real multi-site experiments with CCSM indicate that Grid executions can lead to improved application throughput for climate models.