341 resultados para Metallic part
Resumo:
Oxides of the formula La3LnBaCu5O13+δ (Ln = Nd, Sm, Gd, Dy, or Y) exhibiting metallic resistivity have been prepared and characterized. In the case of yttrium, a composition close to La2Y2BaCu5O13+δ, which is also metallic, could be prepared.
Resumo:
Long-range transport of continental dust makes these particles a significant constituent even at locations far from their sources. It is important to study the temporal variations in dust loading over desert regions and the role of meteorology, in order to assess its radiative impact. In this paper, infrared radiance (10.5-12.5 mu m), acquired by the METEOSAT-5 satellite (similar to 5-km resolution) during 1999 and 2003 was used to quantify wind dependence of dust aerosols and to estimate the radiative forcing. Our analysis shows that the frequency of occurrence of dust events was higher during 2003 compared to 1999. Since the dust production function depends mainly on the surface wind speed over regions which are dry and without vegetation, the role of surface wind on IDDI was examined in detail. It was found that an increase of IDDI with wind speed was nearly linear and the rate of increase in IDDI with surface wind was higher during 2003 compared to 1999. It was also observed that over the Indian desert, when wind speed was the highest during monsoon months (June to August), the dust production rate was lower because of higher soil moisture (due to monsoon rainfall). Over the Arabian deserts, when the wind speed is the highest during June to August, the dust production rate is also highest, as soil moisture is lowest during this season. Even though nothing can be said precisely on the reason why 2003 had a greater number of dust events, examination of monthly mean soil moisture at source regions indicates that the occurrence of high winds simultaneous with high soil moisture could be the reason for the decreased dust production efficiency in 1999. It appears that the deserts of Northwest India are more efficient dust sources compared to the deserts of Saudi Arabia and Northeast Africa (excluding Sahara). The radiative impact of dust over various source regions is estimated, and the regionally and annually averaged top of the atmosphere dust radiative forcing (short wave, clear-sky and over land) over the entire study region (0-35 degrees N; 30 degrees-100 degrees E) was in the range of -0.9 to +4.5 W m(-2). The corresponding values at the surface were in the range of -10 to -25 W m(-2). Our studies demonstrate that neglecting the diurnal variation of dust can cause errors in the estimation of long wave dust forcing by as much as 50 to 100%, and nighttime retrieval of dust can significantly reduce the uncertainties. A method to retrieve dust aerosols during nighttime is proposed. The regionally and annually averaged long wave dust radiative forcing was +3.4 +/- 1.6 W m(-2).
Resumo:
The influences of the amorphous matrix and crystalline dendrite phases on the hardness and elastic moduli of Zr/Ti-based bulk metallic glass matrix composites have been assessed. While the moduli of the composites correspond to those predicted by the rule of mixtures, the hardness of the composites is similar to that of the matrix, suggesting that the plastic flow in the composites under constrained conditions such as indentation is controlled by the flow resistance of the contiguous matrix. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effect Of Molybdenum And Silicon On The Electrochemical Corrosion Behavior Of Fenib Metallic Glasses
Resumo:
The effect of tensile prestrain on fatigue crack propagation behaviour of commercial mild steel with significant amount of stringer inclusions has been studied. In prestrained materials the usual stable stage II crack growth region is preceded by a phase wherein a retardation in crack growth rate occurs. No such behaviour is observed in annealed material. The amount of retardation is found to increase with increase in prestrain. A mechanism for the observed retardation in crack growth rate is also presented.
Resumo:
The possible role of double valence fluctuation in both lead and oxide ions with reference to metallization in oxides of lead is examined by x-ray-photoemission spectroscopy, ultraviolet-photoemission spectroscopy (UPS), and 207Pb NMR studies. The double valence fluctuations may be viewed as Pb4++2O2-⇄Pb2+O22-. While the insulating oxides PbO, Pb3O4, and Sr2PbO4 show a single oxide ion, O2- characterized by O(1s) at 529.7 eV, the insulating peroxide BaO2 is characterized by the ion O22- with a single O(1s) at 533 eV. The metallic PbO2, BaPbO3, BaBiPbO3, and SrPbO3 showed the occurrence of both O2- and O22- ions. The valence band in these compounds has also been studied by UPS, and clear evidence for the coexistence of O2- and O22- is seen in PbO2. A simultaneous study of 207Pb NMR suggests that the Pb ion could also exist in mixed-valence states. Qualitative arguments are presented to rationalize the existence of such mixed valences of the anion in metal oxides in general and their role in superconductivity.
Resumo:
The modular formalism of Rangarajan [J. Electroanal. Chem., 55 (1974) 297] has been applied to the admittance of lipid bilayer membranes. The method leads to equations which clearly show the interrelations between the various partial processes involved in ion transport, and which allow examination of model assumptions without the need for a complete rederivation of the membrane admittance. Explicit expressions are given for both the continuum and single jump models. The former includes the ionic displacement component, important mostly at high frequencies.
Resumo:
The crystal structures of two ternary metal nucleotide complexes of cobalt, [Co(en)2(H2O)2]-[Co(5?-IMP)2(H2O)4]Cl2·4H2O (1) and [Co(en)2(H2O)2][Co(5?-GMP)2(H2O)4]Cl2·4H2O (2), have been analysed by X-ray diffraction (en = ethylenediamine, 5?-IMP = inosine 5?-monophosphate, and 5?-GMP = guanosine 5?-monophosphate). Both complexes crystallize in the orthorhombic space group C2221 with a= 8.725(1), b= 25.891(5), c= 21.212(5)Å, Z= 4 for (1) and a= 8.733(2), b= 26.169(4), c= 21.288(4)Å, Z= 4 for (2). The structure of (1) was solved by the heavy-atom method, while that of (2) was deduced from (1). The structures were refined to R values of 0.09 and 0.10 for 1 546 and 1 572 reflections for (1) and (2) respectively. The two structures are isomorphous. A novel feature is that the chelate ligand en and the nucleotide are not co-ordinated to the same metal ion. One of the metal ions lying on the two-fold a axis is octahedrally co-ordinated by two chelating en molecules and two water oxygens, while the other on the two-fold b axis is octahedrally co-ordinated by two N(7) atoms of symmetry-related nucleotides in a cis position and four water oxygens. The conformations of the nucleotides are C(2?)-endo, anti, and gauche�gauche. In both (1) and (2) the charge-neutralising chloride ions are disordered in the vacant space between the molecules. These structures bear similarities to the mode of nucleotide co-ordination to PtII complexes of 6-oxopurine nucleotides, which are the proposed models for intrastrand cross-linking in DNA by a metal complex.
Resumo:
The modular formalism of Rangarajan [J. Electroanal. Chem., 55 (1974) 297] has been applied to the admittance of lipid bilayer membranes. The method leads to equations which clearly show the interrelations between the various partial processes involved in ion transport, and which allow examination of model assumptions without the need for a complete rederivation of the membrane admittance. Explicit expressions are given for both the continuum and single jump models. The former includes the ionic displacement component, important mostly at high frequencies.
Resumo:
The ternary metal nucleotide complexes [Ni(en)1.3(H2O)1.4(H2O)2][Ni(5?-dGMP)2(en)0.7-(H2O)0.6(H2O)2]·7H2O (1) and [Ni(en)2(H2O)2][Ni(5?-GMP)2(H2O)4]·6H2O (2)(en = ethylenediamine, 5?-dGMP = 2?-deoxyguanosine 5?-monophosphate, 5?-GMP = guanosine 5?-monophosphate) have been prepared and their structures analyzed by X-ray diffraction methods. Both compounds crystallise in the space group C2221 with a= 8.810(1), b= 25.090(4), c= 21.084(1)Å, and Z= 4 for (1) and a= 8.730(1), b= 25.691(4), c= 21.313(5)Å, and Z= 4 for (2). The structures were deduced from the analogous CoIII complexes and refined by full-matrix least-squares methods to final R values of 0.087 and 0.131 for 1 211 and 954 reflections for (1) and (2) respectively. An interesting feature of the deoxyribonucleotide complex (1) is that en is not totally labilized from the metal centre on nucleotide co-ordination, as observed in corresponding ribonucleotide complexes. Apart from extensive intra- and inter-molecular hydrogen bonding, the structures are stabilized by significant intracomplex base�base and base�sugar interactions. The nucleotides in both complexes have an anti base, C(2?)-endo sugar pucker, and gauche�gauche conformation about the C(4?)�C(5?) bond.
Resumo:
With a view to understand the oxidation states of metal ions involved in oxide superconductors, oxidation behavior of Cu, Pb, and Bi metals have been studiedi employing x-ray-photoemission and ultraviolet-photoemission spectroscopy. Pb and Bi have distinct 6p (0 to 4 eV) and 6s (7.5 to 10 eV) bands and upon oxidation, only the 6p electrons are ionized forming PbO and Bi2O3 with the simultaneous development of the O2-(2p) band (3 to 7 eV). We show that the 6s band of metals lies below the O2-(2p) band, and hence 6s electrons cannot be ionized to form Pb4+ and Bi4+ as expected in PbO2, BaPbO3, BaBiO3, and BaPb0.75Bi0.25O3. Instead these oxides are stabilized with lower valent O22- along with O2- ions with metals remaining in +2 and +3 states. Similarly, it is shown that the Cu2+(3d) band overlaps with the O2-(2p) band in the YBa2Cu3O6.95 completely and the excess oxygen can be stabilized through lower valent oxide ions instead of Cu3+.
Resumo:
An invariant imbedding method yields exact analytical results for the distribution of the phase theta (L) of the reflection amplitude and for low-order resistance moments (pn) for a disordered conductor of length L in the quasi-metallic regime L<
Resumo:
A new theoretical equation for interaction parameter in multicomponent metallic solutions is developed using the pseudopotential formalism coupled with the free energy of the hard sphere system. The approximate expression for the pseudopotential term is given in terms of the heat of solution at infinite dilution, to allow easy evaluation of the interaction parameter in various multicomponent systems. This theory has been applied to 23 non-ferrous alloys based on Pb, Sn, Bi and indium. Comparison with the results of previous theoretical calculations using only the hard sphere model suggests that the inclusion of the pseudopotential term yields a quantitatively more correct prediction of interaction parameters in multicomponent metallic solutions. Numerical calculations were also made for 320 Fe-base solutions relevant to steelmaking and the agreement between calculation and experimental data appears reasonable, with 90% reliability in predicting the correct sign.