291 resultados para Layer manufacturing
Resumo:
Steady two-dimensional and axisymmetric compressible nonsimilar laminar boundary-layer flows with non-uniform slot injection (or suction) and non-uniform wall enthalpy have been studied from the starting point of the streamwise co-ordinate to the exact point of separation. The effect of different free stream Mach number has also been considered. The finite discontinuities arising at the leading and trailing edges of the slot for the uniform slot injection (suction) or wall enthalpy are removed by choosing appropriate non-uniform slot injection (suction) or wall enthalpy. The difficulties arising at the starting point of the streamwise co-ordinate, at the edges of the slot and at the point of separation are overcome by applying the method of quasilinear implicit finite difference scheme with an appropriate selection of finer step size along the streamwise direction. It is observed that the non-uniform slot injection moves the point of separation downstream but the non-uniform slot suction has the reverse effect. The increase of Mach number shifts the point of separation upstream due to the adverse pressure gradient. The increase of total enthalpy at the wall causes the separation to occur earlier while cooling delays it. The non-uniform total enthalpy at the wall (i.e., the cooling or heating of the wall in a slot) along the streamwise co-ordinate has very little effect on the skin friction and thus on the point of separation.
Resumo:
We present a framework for performance evaluation of manufacturing systems subject to failure and repair. In particular, we determine the mean and variance of accumulated production over a specified time frame and show the usefulness of these results in system design and in evaluating operational policies for manufacturing systems. We extend this analysis for lead time as well. A detailed performability study is carried out for the generic model of a manufacturing system with centralized material handling. Several numerical results are presented, and the relevance of performability analysis in resolving system design issues is highlighted. Specific problems addressed include computing the distribution of total production over a shift period, determining the shift length necessary to deliver a given production target with a desired probability, and obtaining the distribution of Manufacturing Lead Time, all in the face of potential subsystem failures.
Resumo:
A little more than sixty years ago, the late L. A. Ramdas discovered a curious atmospheric phenomenon which had not been satisfactorily explained till recently. The phenomenon is the observation of a temperature minimum some 20-50 cm above bare soil on calm, clear nights. The first reports of these observations were treated with much scepticism, as the prevailing view was that the nocturnal temperature minimum always occurs at ground. In the present address the history of work on the lifted temperature minimum is traced and a new explanation is offered. It is emphasized that in this as well as many other phenomena, it is important to account for surfaces that are not perfectly black radiatively, i.e. those whose emissivity is not unity.
Resumo:
The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30-07:30 IST) and afternoon time (16:00-18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12 degrees 58' N, 77 degrees 38' E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of similar to 7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by similar to 2 parts per thousand compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) ``polluted air'' (PA) with isotopically enriched ``free atmospheric air'' (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.
Resumo:
A 6 X 6 transfer matrix is presented to evaluate the response of a multi-layer infinite plate to a given two-dimensional pressure excitation on one of its faces or, alternatively, to evaluate the acoustic pressure distribution excited by the normal velocity components of the radiating surfaces. It is shown that the present transfer matrix is a general case embodying the transfer matrices of normal excitation and one-dimensional pressure excitation due to an oblique incident wave. It is also shown that the present transfer matrix obeys the necessary checks to categorize the physically symmetric multi-layer plate as dynamically symmetric. Expressions are derived to obtain the wave propagation parameters, such as the transmission, absorption and reflection coefficients, in terms of the elements of the transfer matrix presented. Numerical results for transmission loss and reflection coefficients of a two-layer configuration are presented to illustrate the effect of angles of incidence, layer characteristics and ambient media.
Resumo:
Very rapid (within 5 min), selective, single-step deoxygenation of layer- and chain-containing oxides, MoO3, CrO3, V2O5, alpha-VOPO4 . 2H(2)O and Ag6Mo10O33 has been accomplished using graphitic carbon in a microwave-assisted reaction. The products were found to be MoO2, Cr2O3, VO2, VPO4 and a mixture of (Ag + MoO2), respectively. Products were characterised by X-ray diffraction (XRD), differential scanning calorimetry (DSC), IR and electron paramagnetic resonance (EPR) spectroscopies. Although conventional methods of preparing these materials are tedious, the present method is simple, fast and yields very homogeneous products of good crystallinity. Our results reveal that while layer- and chain-containing oxides undergo rapid microwave-assisted carbothermal reduction, the non-layered materials do not. The high structural selectivity of these reactions is suggestive of the topochemical nature of the fast reduction process.
Resumo:
An attempt has been made here to study the sensitivity of the mean and the turbulence structure of the monsoon trough boundary layer to the choice of the constants in the dissipation equation for two stations Delhi and Calcutta, using one-dimensional atmospheric boundary layer model with e-epsilon turbulence closure. An analytical discussion of the problems associated with the constants of the dissipation equation is presented. It is shown here that the choice of the constants in the dissipation equation is quite crucial and the turbulence structure is very sensitive to these constants. The modification of the dissipation equation adopted by earlier studies, that is, approximating the Tke generation (due to shear and buoyancy production) in the epsilon-equation by max (shear production, shear + buoyancy production), can be avoided by a suitable choice of the constants suggested here. The observed turbulence structure is better simulated with these constants. The turbulence structure simulation with the constants recommended by Aupoix et al (1989) (which are interactive in time) for the monsoon region is shown to be qualitatively similar to the simulation obtained with the constants suggested here, thus implying that no universal constants exist to regulate dissipation rate. Simulations of the mean structure show little sensitivity to the type of the closure parameterization between e-l and e-epsilon closures. However the turbulence structure simulation with e-epsilon closure is far better compared to the e-l model simulations. The model simulations of temperature profiles compare quite well with the observations whenever the boundary layer is well mixed (neutral) or unstable. However the models are not able to simulate the nocturnal boundary layer (stable) temperature profiles. Moisture profiles are simulated reasonably better. With one-dimensional models, capturing observed wind variations is not up to the mark.
Resumo:
Mathematical modelling plays a vital role in the design, planning and operation of flexible manufacturing systems (FMSs). In this paper, attention is focused on stochastic modelling of FMSs using Markov chains, queueing networks, and stochastic Petri nets. We bring out the role of these modelling tools in FMS performance evaluation through several illustrative examples and provide a critical comparative evaluation. We also include a discussion on the modelling of deadlocks which constitute an important source of performance degradation in fully automated FMSs.
Resumo:
A structured systems methodology was developed to analyse the problems of production interruptions occurring at random intervals in continuous process type manufacturing systems. At a macro level the methodology focuses on identifying suitable investment policies to reduce interruptions of a total manufacturing system that is a combination of several process plants. An interruption-tree-based simulation model was developed for macroanalysis. At a micro level the methodology focuses on finding the effects of alternative configurations of individual process plants on the overall system performance. A Markov simulation model was developed for microlevel analysis. The methodology was tested with an industry-specific application.
Resumo:
On calm clear nights, air at a height of a few decimetres above bare soil can be cooler than the surface by several degrees in what we shall call the Ramdas layer (Ramdas and Atmanathan, 1932). The authors have recently offered a logical explanation for such a lifted temperature minimum, together with a detailed numerical model. In this paper, we provide physical insight into the phenomenon by a detailed discussion of the energy budget in four typical cases, including one with a lifted minimum. It is shown that the net cooling rate near ground is the small difference between two dominant terms, representing respectively radiative upflux from the ground and from the air layers just above ground. The delicate energy balance that leads to the lifted minimum is upset by turbulent transport, by surface emissivity approaching unity, or by high ground cooling rates. The rapid variation of the flux emissivity of humid air is shown to dominate radiative transport near the ground.
Resumo:
Analytical expressions which include depletion layer effects on low-injection carrier relaxation are being presented for the first time here. Starting from the continuity equation for the minority carriers, we derive expressions for the output signal pertinent to time-resolved microwave and luminescence experiments. These are valid for the time domain that usually overlaps with the time scales of surface processes, such as charge transfer and trapping. Apart from the usual pulse form of illumination, theoretical expressions pertaining to other forms of illumination such as switch-on and switch-off transient modes, a periodic mode, and a steady state and their various inter-relationships are derived here. The expressions obtained are seen to be generalizations of existing flat-band low-injection results in the Limit of early or initial band bendings. The importance of the depletion layer as an experimental parameter is clearly seen in the limit of larger band bendings wherein it is shown, unlike the flat-band case, to exhibit pure exponential forms of carrier relaxation. Our results are consistent with the main conclusions of the numerical and experimental work published recently. Furthermore, this work provides the actual functional relationships between the applied potential and observed carrier decay. This should enable one to extract the surface kinetic parameters, after deciding on the dominant mode of carrier relaxation at the interface, whether charge transfer or trapping, by studying the potential dependence of the fate of relaxation.
Resumo:
Discrete vortex simulations of the mixing layer carried out in the past have usually involved large induced velocity fluctuations, and thus demanded rather long time-averaging to obtain satisfactory values of Reynolds stresses and third-order moments. This difficulty has been traced here, in part, to the use of discrete vortices to model what in actuality are continuous vortex sheets. We propose here a novel two-dimensional vortex sheet technique for computing mixing layer flow in the limit of infinite Reynolds number. The method divides the vortex sheet into constant-strength linear elements, whose motions are computed using the Biot-Savart law. The downstream far-field is modelled by a steady vorticity distribution derived by application of conical similarity from the solution obtained in a finite computational domain. The boundary condition on the splitter plate is satisfied rigorously using a doublet sheet. The computed large-scale roll-up of the vortex sheet is qualitatively similar to experimentally obtained shadow-graphs of the plane turbulent mixing layer. The mean streamwise velocity profile and the growth rate agree well with experimental data. The presently computed Reynolds stresses and third-order moments are comparable with experimental and previous vortex-dynamical results, without using any external parameter (such as the vortex core-size) of the kind often used in the latter. The computed autocorrelations are qualitatively similar to experimental results along the top and bottom edges of the mixing layer, and show a well-defined periodicity along the centreline. The accuracy of the present computation is independently established by demonstrating negligibly small changes in the five invariants (including the Hamiltonian) in vortex dynamics.