140 resultados para LIQUIDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental data on evaporation of droplets of decane, Jet-A1, and Jet-A1 surrogate are generated using a spray in crossflow configuration. The advantage of a crossflow configuration is that it enables us to study droplet evaporation under forced convective conditions involving droplet diameters of size relevant in practical combustors. Specifically, spray from an airblast atomizer is injected into a preheated crossflow of air and the resulting spray is characterized in terms of spray structure along with droplet size and velocity. An existing correlation for the spray trajectory is modified to incorporate the effect of elevated temperature, and is found to be in good agreement with the experimental data. Droplet sizes and velocities are measured at different locations along the crossflow direction to assess droplet evaporation. Specifically, droplets having size less than 25-mu m are selected for further analysis since these droplets are observed to exhibit velocities which are aligned with the crossflow. By comparing the droplet diameter profiles at upstream and downstream locations, the evaporation constant k for the d(2)-law is obtained iteratively. To assess the efficacy of the values of k obtained, the calculated droplet size distribution using the proposed k values at the downstream location is compared with the measured droplet size distribution at that location. A reasonably good match is found for all the three liquids confirming the validity of the analysis. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While absorption and emission spectroscopy have always been used to detect and characterize molecules and molecular complexes, the availability of ultrashort laser pulses and associated computer-aided optical detection techniques allowed study of chemical processes directly in the time domain at unprecedented time scales, through appearance and disappearance of fluorescence from participating chemical species. Application of such techniques to chemical dynamics in liquids, where many processes occur with picosecond and femtosecond time scales lead to the discovery of a host of new phenomena that in turn led to the development of many new theories. Experiment and theory together provided new and valuable insight into many fundamental chemical processes, like isomerization dynamics, electron and proton transfer reactions, vibrational energy and phase relaxation, photosynthesis, to name just a few. In this article, we shall review a few of such discoveries in attempt to provide a glimpse of the fascinating research employing fluorescence spectroscopy that changed the field of chemical dynamics forever.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop a scheme based on a real space microscopic analysis of particle dynamics to ascertain the relevance of dynamical facilitation as a mechanism of structural relaxation in glass-forming liquids. By analyzing the spatial organization of localized excitations within clusters of mobile particles in a colloidal glass former and examining their partitioning into shell-like and corelike regions, we establish the existence of a crossover from a facilitation-dominated regime at low area fractions to a collective activated hopping-dominated one close to the glass transition. This crossover occurs in the vicinity of the area fraction at which the peak of the mobility transfer function exhibits a maximum and the morphology of cooperatively rearranging regions changes from stringlike to a compact form. Collectively, our findings suggest that dynamical facilitation is dominated by collective hopping close to the glass transition, thereby constituting a crucial step towards identifying the correct theoretical scenario for glass formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low resistance motion of liquids on a well-defined path is beneficial for several MEMS based applications including energy harvesting and switching. By eliminating the contact line we demonstrate low resistance motion of a liquid bulge on pre-wetted strips. The bulge appears on wetted strips due to a morphological instability. The wetted strip confines the mercury bulge and defines its path of motion. Resistance to initiate motion of the bulge was studied experimentally and compared to other cases. An electret based energy harvesting device using bulge motion has been fabricated and tested.