163 resultados para K-Servos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work derives inner and outer bounds on the generalized degrees of freedom (GDOF) of the K-user symmetric MIMO Gaussian interference channel. For the inner bound, an achievable GDOF is derived by employing a combination of treating interference as noise, zero-forcing at the receivers, interference alignment (IA), and extending the Han-Kobayashi (HK) scheme to K users, depending on the number of antennas and the INR/SNR level. An outer bound on the GDOF is derived, using a combination of the notion of cooperation and providing side information to the receivers. Several interesting conclusions are drawn from the bounds. For example, in terms of the achievable GDOF in the weak interference regime, when the number of transmit antennas (M) is equal to the number of receive antennas (N), treating interference as noise performs the same as the HK scheme and is GDOF optimal. For K >; N/M+1, a combination of the HK and IA schemes performs the best among the schemes considered. However, for N/M <; K ≤ N/M+1, the HK scheme is found to be GDOF optimal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address a physics based closed form model for the energy band gap (E-g) and the transport electron effective mass in relaxed and strained 100] and 110] oriented rectangular Silicon Nanowire (SiNW). Our proposed analytical model along 100] and 110] directions are based on the k.p formalism of the conduction band energy dispersion relation through an appropriate rotation of the Hamiltonian of the electrons in the bulk crystal along 001] direction followed by the inclusion of a 4 x 4 Luttinger Hamiltonian for the description of the valance band structure. Using this, we demonstrate the variation in Eg and the transport electron effective mass as function of the cross-sectional dimensions in a relaxed 100] and 110] oriented SiNW. The behaviour of these two parameters in 100] oriented SiNW has further been studied with the inclusion of a uniaxial strain along the transport direction and a biaxial strain, which is assumed to be decomposed from a hydrostatic deformation along 001] with the former one. In addition, the energy band gap and the effective mass of a strained 110] oriented SiNW has also been formulated. Using this, we compare our analytical model with that of the extracted data using the nearest neighbour empirical tight binding sp(3)d(5)s* method based simulations and has been found to agree well over a wide range of device dimensions and applied strain. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key points center dot Active calcium signal propagation occurs when an initial calcium trigger elicits calcium release through endoplasmic reticulum (ER) receptors. A high concentration of the calcium trigger in thin-calibre dendrites would suppress release of calcium through hippocampal inositol trisphosphate receptors (InsP3Rs). center dot Could the high-density expression of A-type K+ channels in thin-calibre dendrites be a mechanism for inhibiting this suppression, thereby restoring the utility of the ER as a substrate for active calcium propagation? center dot Quantitative analyses involving experimentally constrained models reveal a bell-shaped dependence of calcium released through InsP3Rs on the A-type K+ channel density, during the propagation of a calcium wave. center dot A-type K+ channels regulated the relative contribution of ER calcium to the induction of synaptic plasticity in the presence of model metabotropic glutamate receptors. center dot These results identify a novel form of interaction between active dendrites and the ER membrane and suggest that A-type K+ channels are ideally placed for inhibiting the suppression of InsP3Rs in thin-calibre dendrites. Abstract The A-type potassium current has been implicated in the regulation of several physiological processes. Here, we explore a role for the A-type potassium current in regulating the release of calcium through inositol trisphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampal pyramidal neurons. To do this, we constructed morphologically realistic, conductance-based models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density ofA-type potassium channels, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendritic diameter and that wave initiation occurred at branch points as a consequence of a high surface area to volume ratio of oblique dendrites. Furthermore, analogous to the role ofA-type potassium channels in regulating spike latency, we found that an increase in the density ofA-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (mGluR) signalling components and a calcium-controlled plasticity rule into our model and demonstrate thatthe presence of mGluRs induced a leftward shift in a BienenstockCooperMunro-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. Our results establish a novel form of interaction between active dendrites and the ER membrane, uncovering a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling microdomains through changes in dendritic excitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-negative matrix factorization [5](NMF) is a well known tool for unsupervised machine learning. It can be viewed as a generalization of the K-means clustering, Expectation Maximization based clustering and aspect modeling by Probabilistic Latent Semantic Analysis (PLSA). Specifically PLSA is related to NMF with KL-divergence objective function. Further it is shown that K-means clustering is a special case of NMF with matrix L2 norm based error function. In this paper our objective is to analyze the relation between K-means clustering and PLSA by examining the KL-divergence function and matrix L2 norm based error function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a Physical layer Network Coding (PNC) scheme for the K-user wireless Multiple Access Relay Channel, in which K source nodes want to transmit messages to a destination node D with the help of a relay node R. The proposed scheme involves (i) Phase 1 during which the source nodes alone transmit and (ii) Phase 2 during which the source nodes and the relay node transmit. At the end of Phase 1, the relay node decodes the messages of the source nodes and during Phase 2 transmits a many-to-one function of the decoded messages. To counter the error propagation from the relay node, we propose a novel decoder which takes into account the possibility of error events at R. It is shown that if certain parameters are chosen properly and if the network coding map used at R forms a Latin Hypercube, the proposed decoder offers the maximum diversity order of two. Also, it is shown that for a proper choice of the parameters, the proposed decoder admits fast decoding, with the same decoding complexity order as that of the reference scheme based on Complex Field Network Coding (CFNC). Simulation results indicate that the proposed PNC scheme offers a large gain over the CFNC scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the inference for the component and system lifetime distribution of a k-unit parallel system with independent components based on system data. The components are assumed to have identical Weibull distribution. We obtain the maximum likelihood estimates of the unknown parameters based on system data. The Fisher information matrix has been derived. We propose -expectation tolerance interval and -content -level tolerance interval for the life distribution of the system. Performance of the estimators and tolerance intervals is investigated via simulation study. A simulated dataset is analyzed for illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the class Sigma(k)(d) of k-stellated (combinatorial) spheres of dimension d (0 <= k <= d + 1) and compare and contrast it with the class S-k(d) (0 <= k <= d) of k-stacked homology d-spheres. We have E-1(d) = S-1(d), and Sigma(k)(d) subset of S-k(d) ford >= 2k-1. However, for each k >= 2 there are k-stacked spheres which are not k-stellated. For d <= 2k - 2, the existence of k-stellated spheres which are not k-stacked remains an open question. We also consider the class W-k(d) (and K-k(d)) of simplicial complexes all whose vertex-links belong to Sigma(k)(d - 1) (respectively, S-k(d - 1)). Thus, W-k(d) subset of K-k(d) for d >= 2k, while W-1(d) = K-1(d). Let (K) over bar (k)(d) denote the class of d-dimensional complexes all whose vertex-links are k-stacked balls. We show that for d >= 2k + 2, there is a natural bijection M -> (M) over bar from K-k(d) onto (K) over bar (k)(d + 1) which is the inverse to the boundary map partial derivative: (K) over bar (k)(d + 1) -> (K) over bar (k)(d). Finally, we complement the tightness results of our recent paper, Bagchi and Datta (2013) 5], by showing that, for any field F, an F-orientable (k + 1)-neighbourly member of W-k(2k + 1) is F-tight if and only if it is k-stacked.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common valencies associated with K and O atoms are 1+ and 2-. As a result, one expects K2O to be the oxide of potassium which is the most stable with respect to its constituents. Calculating the formation energy within electronic structure calculations using hybrid functionals, one finds that K2O2 has the largest formation energy, implying the largest stability of this oxide of potassium with respect to its constituents. This is traced to the presence of oxygen dimers in the K2O2 structure which interact strongly resulting in a larger formation energy compared to the more ionic K2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let k be an integer and k >= 3. A graph G is k-chordal if G does not have an induced cycle of length greater than k. From the definition it is clear that 3-chordal graphs are precisely the class of chordal graphs. Duchet proved that, for every positive integer m, if G m is chordal then so is G(m+2). Brandst `` adt et al. in Andreas Brandsadt, Van Bang Le, and Thomas Szymczak. Duchet- type theorems for powers of HHD- free graphs. Discrete Mathematics, 177(1- 3): 9- 16, 1997.] showed that if G m is k - chordal, then so is G(m+2). Powering a bipartite graph does not preserve its bipartitedness. In order to preserve the bipartitedness of a bipartite graph while powering Chandran et al. introduced the notion of bipartite powering. This notion was introduced to aid their study of boxicity of chordal bipartite graphs. The m - th bipartite power G(m]) of a bipartite graph G is the bipartite graph obtained from G by adding edges (u; v) where d G (u; v) is odd and less than or equal to m. Note that G(m]) = G(m+1]) for each odd m. In this paper we show that, given a bipartite graph G, if G is k-chordal then so is G m], where k, m are positive integers with k >= 4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaling of the streamwise velocity spectrum phi(11)(k(1)) in the so-called sink-flow turbulent boundary layer is investigated in this work. The present experiments show strong evidence for the k(1)(-1) scaling i.e. phi(11)(k(1)) = Lambda(1)U(tau)(2)k(1)(-1), where k(1)(-1) is the streamwise wavenumber and U-tau is the friction velocity. Interestingly, this k(1)(-1) scaling is observed much farther from the wall and at much lower flow Reynolds number (both differing by almost an order of magnitude) than what the expectations from experiments on a zero-pressure-gradient turbulent boundary layer flow would suggest. Furthermore, the coefficient A(1) in the present sink-flow data is seen to be non-universal, i.e. A(1) varies with height from the wall; the scaling exponent -1 remains universal. Logarithmic variation of the so-called longitudinal structure function, which is the physical-space counterpart of spectral k(1)(-1) scaling, is also seen to be non-universal, consistent with the non-universality of A(1). These observations are to be contrasted with the universal value of A(1) (along with the universal scaling exponent of 1) reported in the literature on zero-pressure-gradient turbulent boundary layers. Theoretical arguments based on dimensional analysis indicate that the presence of a streamwise pressure gradient in sink-flow turbulent boundary layers makes the coefficient A(1) non-universal while leaving the scaling exponent -1 unaffected. This effect of the pressure gradient on the streamwise spectra, as discussed in the present study (experiments as well as theory), is consistent with other recent studies in the literature that are focused on the structural aspects of turbulent boundary layer flows in pressure gradients (Harun etal., J. Flui(d) Mech., vol. 715, 2013, pp. 477-498); the present paper establishes the link between these two. The variability of A(1) accommodated in the present framework serves to clarify the ideas of universality of the k(1)(-1) scaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nano ZnFe2O4 compound was prepared by eco-friendly hydrothermal method. The characterization of the sample for its structure, morphology and composition were done by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dynamic light scattering, Fourier transform infrared spectroscopy, zeta surface profiler and UV-Visible spectroscopy studies. The PXRD measurement reveals that the compound shows spinel cubic phase belong Fd (3) over barm (227) space group. Morphology of the compound from SEM and surface profile shows nearly spherical agglomerated particles with well defined grains and grain boundaries. The material shows the semiconducting behavior with E-g of 2.3 eV at room temperature (RT). The variation in the magnetic ordering was observed for wide range of temperature. The compound behaves like a soft magnetic material with ferrimagnetic at various temperatures except at RT. Both magnetic and EPR studies supports the superparamagnetic behavior of the the sample. The DC conductivity, dielectric and AC conductivity behavior of the 1000 degrees C pellets sintered for 2 h shows good frequency dependent transport properties. The present study facilitate in selecting the suitable materials for the nanoelectronics and spintronic applications. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and implementation of a morphing Micro Air Vehicle (MAV) wing using a smart composite is attempted in this research work. Control surfaces actuated by traditional servos are difficult to instrument and fabricate on thin composite-wings of MAVs. Piezoelectric Fiber Reinforced Composites (PFRCs) are the chosen smart structural materials in the current work for incorporation onto fixed-wing MAVs to simultaneously perform the dual functions of structural load-bearing and actuation of flexure, torsion and/or extension for morphing. Further, PFRC use can be extended towards shape control of a “fixed” wing MAV to meet changing performance requirements. Wings that can warp into desired shapes and/or have variable camber are well-known to exhibit improved efficiency in aerodynamic control. During an entire flight cycle, there are multiple optimal configurations, each of which suits a particular phase of the flight regime. Widely proposed methods of wing morphing include changes in camber, twist, sweep and span. However, camber change during flight is already established, in terms of its potential, as a major factor in improving the aerofoil efficiency and flow separation behavior. Hence, for this work, morphing with camber change is adopted with the goal to better tailor aerodynamic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of Nd1-xYxMnO3 (x-0-0.5) is studied using x-ray absorption near-edge structure (XANES) spectroscopy at the Mn K-edge along with the DFT-based LSDA+U and real space cluster calculations. The main edge of the spectra does not show any variation with doping. The pre-edge shows two distinct features which appear well-separated with doping. The intensity of the pre-edge decreases with doping. The theoretical XANES were calculated using real space multiple scattering methods which reproduces the entire experimental spectra at the main edge as well as the pre-edge. Density functional theory calculations are used to obtain the Mn 4p, Mn 3d and O 2p density of states. For x=0, the site-projected density of states at 1.7 eV above Fermi energy shows a singular peak of unoccupied e(g) (spin-up) states which is hybridized Mn 4p and O 2p states. For x=0.5, this feature develops at a higher energy and is highly delocalized and overlaps with the 3d spin-down states which changes the pre-edge intensity. The Mn 4p DOS for both compositions, show considerable difference between the individual p(x), p(y) and p(z)), states. For x=0.5, there is a considerable change in the 4p orbital polarization suggesting changes in the Jahn-Teller effect with doping. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers linear precoding for the constant channel-coefficient K-user MIMO Gaussian interference channel (MIMO GIC) where each transmitter-i (Tx-i) requires the sending of d(i) independent complex symbols per channel use that take values from fixed finite constellations with uniform distribution to receiver-i (Rx-i) for i = 1, 2, ..., K. We define the maximum rate achieved by Tx-i using any linear precoder as the signal-to-noise ratio (SNR) tends to infinity when the interference channel coefficients are zero to be the constellation constrained saturation capacity (CCSC) for Tx-i. We derive a high-SNR approximation for the rate achieved by Tx-i when interference is treated as noise and this rate is given by the mutual information between Tx-i and Rx-i, denoted as I(X) under bar (i); (Y) under bar (i)]. A set of necessary and sufficient conditions on the precoders under which I(X) under bar (i); (Y) under bar (i)] tends to CCSC for Tx-i is derived. Interestingly, the precoders designed for interference alignment (IA) satisfy these necessary and sufficient conditions. Furthermore, we propose gradient-ascentbased algorithms to optimize the sum rate achieved by precoding with finite constellation inputs and treating interference as noise. A simulation study using the proposed algorithms for a three-user MIMO GIC with two antennas at each node with d(i) = 1 for all i and with BPSK and QPSK inputs shows more than 0.1-b/s/Hz gain in the ergodic sum rate over that yielded by precoders obtained from some known IA algorithms at moderate SNRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryosorption pump is the only possible device to pump helium, hydrogen and its isotopes in fusion environment, such as high magnetic field and high plasma temperatures. Activated carbons are known to be the most suitable adsorbent in the development of cryosorption pumps. For this purpose, the data of adsorption characteristics of activated carbons in the temperature range 4.5 K to 77 K are needed, but are not available in the literature. For obtaining the above data, a commercial micro pore analyzer operating at 77 K has been integrated with a two stage GM cryocooler, which enables the cooling of the sample temperature down to 4.5 K. A heat switch mounted between the second stage cold head and the sample chamber helps to raise the sample chamber temperature to 77 K without affecting the performance of the cryocooler. The detailed description of this system is presented elsewhere. This paper presents the results of experimental studies of adsorption isotherms measured on different types of activated carbons in the form of granules, globules, flake knitted and non-woven types in the temperature range 4.5 K to 10 K using Helium gas as the adsorbate. The above results are analyzed to obtain the pore size distributions and surface areas of the activated carbons. The effect of adhesive used for bonding the activated carbons to the panels is also studied. These results will be useful to arrive at the right choice of activated carbon to be used for the development of cryosorption pumps.