163 resultados para Grating and tuning mirrors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents the synthesis of a new class of gamma-gamma' cobalt-based superalloy that is free of tungsten as an alloying addition. It has much lower density and higher specific strength than the existing cobalt-based superalloys. The current superalloys have a base composition of Co-10Al and are further tuned by the addition of a binary combination of molybdenum and niobium, with the optimum composition of Co-10Al-5Mo-2Nb. The solvus temperature of the alloy (866 degrees C) can be further enhanced above 950 C by the addition of Ni to give the form Co-xNi-10Al-5Mo-2Nb, where x can be from 0 to 30 at.%. After heat treatment, these alloys exhibit a duplex microstructure with coherent cuboidal L1(2)-ordered precipitates (gamma') throughout the face-centred cubic matrix (gamma), yielding a microstructure that is very similar to nickel-based superalloys as well as recently developed Co-Al-W-based alloys. We show that the stability of the gamma' phase improves significantly with the nickel addition, which can be attributed to the increase in solvus temperature. A very high specific 0.2% proof stress of 94.3 MPa g(-1) cm(-3) at room temperature and 63.8 MPa g(-1) cm(-3) at 870 degrees C were obtained for alloy Co-30Ni-10Al-5Mo-2Nb. The remarkably high specific strength of these alloys makes this class of alloy a promising material for use at high temperature, including gas turbine applications. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron nanostructures with morphology ranging from discrete nanoparticles to nearly monodisperse hierarchical nanostructures have been successfully synthesized using solvated metal atom dispersion (SMAD) method. Such a morphological evolution was realized by tuning the molar ratio of ligand to metal. Surface energy minimization in confluence with strong magnetic interactions and ligand-based stabilization results in the formation of nanospheres of iron. The as-prepared amorphous iron nanostructures exhibit remarkably high coercivity in comparison to the discrete nanoparticles and bulk counterpart. Annealing the as-prepared amorphous Fe nanostructures under anaerobic conditions affords air-stable carbon-encapsulated Fe(0) and Fe3C nanostructures with retention of the morphology. The resulting nanostructures were thoroughly analyzed by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Raman spectroscopy. TGA brought out that Fe3C nanostructures are more robust toward oxidation than those of a-Fe. Finally, detailed magnetic studies were carried out by superconducting quantum interference device (SQUID) magnetometer and it was found that the magnetic properties remain conserved even upon exposure of the annealed samples to ambient conditions for months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of molecular materials in optoelectronic devices critically depends upon their electronic properties and solid-state structure. In this report, we have synthesized sulfur and selenium based (T4BT and T4BSe) donor-acceptor-donor (D-A-D) organic derivatives in order to understand the structure-property correlation in organic semiconductors by selectively tuning the chalcogen atom. The photophysical properties exhibit a significant alteration upon varying a single atom in the molecular structure. A joint theoretical and experimental investigation suggests that replacing sulfur with selenium significantly reduces the band gap and molar absorption coefficient because of lower electronegativity and ionization potential of selenium. Single-crystal X-ray diffraction analysis showed differences in their solid-state packing and intermolecular interactions. Subsequently, difference in the solid-state packing results variation in self-assembly. Micorstructural changes within these materials are correlated to their electrical resistance variation, investigated by conducting probe atomic force microscopy (CP-AFM) measurements. These results provide useful guidelines to understand the fundamental properties of D-A-D materials prepared by atomistic modulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T') and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structureproperty relation due to the rich band structure of MoS2. Remarkably, the metastable 1T'-MoS2 metallic state remains invariant with pressure, with the J(2), A(1g), and E(2)g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibrational properties of the MoS2 family can be extended to other 2D TMDs. These results present an important advance toward controlling the band structure and optoelectronic properties of monolayer MoS2 via pressure, which has vital implications for enhanced device applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystals of voriconazole, an antifungal drug, are soft in nature, and this is disadvantageous during compaction studies where pressure is applied on the solid. Crystal engineering is used to make cocrystals and salts with modified mechanical properties (e.g., hardness). Cocrystals with biologically safe coformers such as fumaric acid, 4-hydroxybenzoic acid, and 4-aminobenzoic acid and salts with hydrochloric acid and oxalic acid are prepared through solvent assisted grinding. The presence (salt) or absence (cocrystal) of proton transfer in these multicomponent crystals is unambiguously confirmed with single crystal X-ray diffraction. All the cocrystals have 1:1 stoichiometry, whereas salts exhibit variable stoichiometries such as HCl salt (1:2) and oxalate salts (1:1.5 and 1:1). The nanoindentation technique was applied on single crystals of the salts and cocrystals. The salts exhibit better hardness than the drug and cocrystals in the order salts drug cocrystals. The molecular origin of this mechanical modulation is explained on the basis of slip planes in the crystal structure and relative orientations of the molecules with respect to the nanoindentation direction. The hydrochloride salt is the hardest solid in this family. This may be useful for tableting of the drug during formulation and in drug development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend to suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber Bragg Grating (FBG) sensors have been extensively used for strain and temperature sensing. However, there is still a need to measure multiple environmental parameters with a single sensor system. We demonstrate a multiplexed FBG sensor with various nano materials (polyallylamine-amino-carbon-nanotube, carbon nanotubes, polyelectrolyte and metals) coated onto the surface of the core/cladding FBG for sensing multiple environmental parameters such as pH (64 pm/pH), protein concentration (5 pm/mu g/ml), temperature (15 pm/degrees C), humidity (31 pm/% RH), gas concentration (7 pm/1000 ppm), and light intensity (infrared: 33 pm/mW, visible: 12 pm/mW and UV: 1 pm/mW) utilizing the same FBG based platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically explore quench dynamics in a finite-sized topological fermionic p-wave superconducting wire with the goal of demonstrating that topological order can have marked effects on such non-equilibrium dynamics. In the case studied here, topological order is reflected in the presence of two (nearly) isolated Majorana fermionic end bound modes together forming an electronic state that can be occupied or not, leading to two (nearly) degenerate ground states characterized by fermion parity. Our study begins with a characterization of the static properties of the finite-sized wire, including the behavior of the Majorana end modes and the form of the tunnel coupling between them; a transfer matrix approach to analytically determine the locations of the zero energy contours where this coupling vanishes; and a Pfaffian approach to map the ground state parity in the associated phase diagram. We next study the quench dynamics resulting from initializing the system in a topological ground state and then dynamically tuning one of the parameters of the Hamiltonian. For this, we develop a dynamic quantum many-body technique that invokes a Wick's theorem for Majorana fermions, vastly reducing the numerical effort given the exponentially large Hilbert space. We investigate the salient and detailed features of two dynamic quantities-the overlap between the time-evolved state and the instantaneous ground state (adiabatic fidelity) and the residual energy. When the parity of the instantaneous ground state flips successively with time, we find that the time-evolved state can dramatically switch back and forth between this state and an excited state even when the quenching is very slow, a phenomenon that we term `parity blocking'. This parity blocking becomes prominently manifest as non-analytic jumps as a function of time in both dynamic quantities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the role of optical wavelength on the photo induced strain in carbon nanotubes (CNT) is probed using a Fiber Bragg Grating (FBG), upon exposure to infrared (IR) (21 mu epsilon mW(-1)) and visible (9 mu epsilon mW(-1)) radiations. The strain sensitivity in CNT is monitored over a smaller range (10(-3) to 10(-9) epsilon) by exposing to a low optical power varying in the range 10(-3) to 10(-6) W. In addition, the wavelength dependent response and recovery periods of CNT under IR (tau(rise) = 150 ms, tau(fall) = 280 ms) and visible (tau(rise) = 1.07 s, tau(fall) = 1.18 s) radiations are evaluated in detail. This study can be further extended to measure the sensitivity of nano-scale photo induced strains in nano materials and opens avenues to control mechanical actuation using various optical wavelengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chiral metamaterials have recently gained attention due to their applicability in developing polarization devices and in the detection of chiral molecules. A common approach towards fabricating plasmonic chiral nanostructures has been decorating metallic nanoparticles on dielectric chiral scaffolds, such as a helix. This resulted in the generation of a large chiro-optical response over a wide range of the electromagnetic spectrum. It has been shown previously that the optical tunability of these chiral metamaterials depends on the geometrical aspects of the overall structure, as well as the nature of the plasmonic constituents. In this study, we have investigated the role of the underlying dielectric scaffold with numerical simulations, and experimentally demonstrated that it is possible to enhance and engineer their chiro-plasmonic response significantly by choosing dielectric scaffolds of appropriate materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembly of nano sized particles during natural drying causes agglomeration and shell formation at the surface of micron sized droplets. The shell undergoes sol-gel transition leading to buckling at the weakest point on the surface and produces different types of structures. Manipulation of the buckling rate with inclusion of surfactant (sodium dodecyl sulphate, SDS) and salt (anilinium hydrochloride, AHC) to the nano-sized particle dispersion (nanosilica) is reported here in an acoustically levitated single droplet. Buckling in levitated droplets is a cumulative, complicated function of acoustic streaming, chemistry, agglomeration rate, porosity, radius of curvature, and elastic energy of shell. We put forward our hypothesis on how buckling occurs and can be suppressed during natural drying of the droplets. Global precipitation of aggregates due to slow drying of surfactant-added droplets (no added salts) enhances the rigidity of the shell formed and hence reduces the buckling probability of the shell. On the contrary, adsorption of SDS aggregates on salt ions facilitates the buckling phenomenon with an addition of minute concentration of the aniline salt to the dispersion. Variation in the concentration of the added particles (SDS/AHC) also leads to starkly different morphologies and transient behaviour of buckling (buckling modes like paraboloid, ellipsoid, and buckling rates). Tuning of the buckling rate causes a transition in the final morphology from ring and bowl shapes to cocoon type of structure. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-invasive, real-time dynamic monitoring of pressure inside a column with the aid of Fiber Bragg Grating (FBG) sensor is presented in the present work. A bare FBG sensor is adhered on the circumference of a pressure column normal to its axis, which has the ability to acquire the hoop strain induced by the pressure variation inside the column. Pressure induced hoop strain response obtained using FBG sensor is validated against the pressure measurements obtained from conventional pressure gauge. Further, a protrusion setup on the outer surface of the column has been proposed over which a secondary FBG sensor is bonded normal to its axis, in order to increase the gauge length of this FBG sensor. This is carried out in order to validate the variation in sensitivity of the protrusion bonded FBG sensor compared to the bare FBG sensor bonded over the surface. A comparative study is done between the two FBG sensors and a conventional pressure gauge in order to establish the capacity of FBG sensor obtained hoop strain response for pressure monitoring inside the column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization of 28 binary and ternary cocrystals of quercetin with dibasic coformers is analyzed in terms of a combinatorial selection from a solution of preferred molecular conformations and supramolecular synthons. The crystal structures are characterized by distinctive O-H center dot center dot center dot N and O-H center dot center dot center dot O based synthons and are classified as nonporous, porous and helical. Variability in molecular conformation and synthon structure led to an increase in the energetic and structural space around the crystallization event. This space is the crystal structure landscape of the compound and is explored by fine-tuning the experimental conditions of crystallization. In the landscape context, we develop a strategy for the isolation of ternary cocrystals with the use of auxiliary template molecules to reduce the molecular and supramolecular `confusion' that is inherent in a molecule like quercetin. The absence of concomitant polymorphism in this study highlights the selectivity in conformation and synthon choice from the virtual combinatorial library in solution.