152 resultados para Graphene, Organic Electronics, Transparent Electrode


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three inorganic-organic hybrid framework cadmium thiosulfate phases have been investigated for adsorption and photodegradation of organic dye molecules. Different classes of organic dyes, viz., triaryl methane, azo, xanthene, anthraquinone, have been studied. The anionic dyes with sulfonate groups appear to readily adsorb on the cadmium thiosulfate compounds in an aqueous medium. The adsorption of the dye molecules, however, does not create any structural changes on the cadmium thiosulfate compounds, though weak electronic interactions have been observed. The adsorbed dyes have been desorbed partially in an alcoholic medium, suggesting possible applications in scavenging specific anionic dyes from the aqueous solutions. Langmuir adsorption/desorption isotherms have been used to model this behavior. UV-assisted (lambda(max) = 365 nm) photocatalytic decomposition studies on the cationic dyes indicate reasonable activity comparable with that of Degussa P-25 (TiO2) catalyst. Sunlight assisted photocatalyti studies have been carried out in detail employing hybrid framework compounds. The Langmuir-Hinshelwood kinetics model, employed to follow the degradation profile of the organic dyes, indicates that the photocatalytic degradation follows the order: triaryl methane > azo > xanthene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight new open-framework inorganic-organic hybrid compounds based on indium have been synthesized employing hydrothermal methods. All of the compounds have InO6, C2O4, and HPO3/HPO4/SO4 units connected to form structures of different dimensionality Thus, the compounds have zero- (I), two- (II, III, IV, V, VII, and VIII), and three-dimensionally (VI) extended networks. The formation of the first zero-dimensional hybrid compound is noteworthy In addition, concomitant polymorphic structures have been observed in the present study. The molecular compound, I, was found to be reactive, and the transformation studies in the presence of a base (pyridine) give rise to the polymorphic structures of II and III, while the addition of an acid (H3PO3) gives rise to a new indium phosphite with a pillared layer structure (T1). Preliminary density functional theory calculations suggest that the stabilities of the polymorphs are different, with one of the forms (II) being preferred over the other, which is consistent with the observed experimental behavior. The oxalate units perform more than one role in the present structures. Thus, the oxalate units connect two In centers to satisfy the coordination requirements as well as to achieve charge balance in compounds II, IV, and VI. The terminal oxalate units observed in compounds I, IV, and V suggest the possibility of intermediate structures. Both in-plane and out-of-plane connectivity of the oxalate units were observed in compound VI. The 31 compounds have been characterized by powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and P-31 NMR studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear optical properties and carrier relaxation dynamics in graphene, suspended in three different solvents, are investigated using femtosecond (80 fs pulses) Z-scan and degenerate pump-probe spectroscopy at 790 nm. The results demonstrate saturable absorption property of graphene with a nonlinear absorption coefficient, beta of (similar to 2-9) x 10(-8) cm/W. Two distinct time scales associated with the relaxation of photoexcited carriers, a fast one in the range of 130-330 fs (related to carrier-carrier scattering) followed by it slower one in 3.5-4.9 ps range (associated with carrier-phonon scattering) are observed. (C) 2009 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron- and nitrogen-doped graphenes are are prepared by the arc discharge between carbon electrodes or by the transformation of nanodiamond under appropriate atmospheres. Using a combination of experiment and theories based on first principles, systematic changes in the carrier-concentration and electronic structure of the doped graphenes are demonstrated. Stiffening of the G-band mode and intensification of the defect-related D-band in the Raman spectra are also observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of solvent on chemical reactivity has generally been explained on the basis of the dielectric constant and viscosity. However a number of spectroscopic studies, including UV-VIS, IR and Raman, has led to numerous empirical parameters to define solvent effect based on either solvating ability or polarity scale. These parameters include solvent polarizability, dipolarity, Lewis acidity and Lewis basicity, E-T(30), pi*, alpha, beta etc. However, from a structural point of view, we can separate solvation as static and dynamic processes. The static solvation basically relates to stabilization of the molecular structure by the solvent to attain the equilibrium structure, both in the intermediate and ground state. Dynamic solvation relates to solvent reorganization-induced dynamics prior to the structural reorganization to reach the equilibrium state. In this paper, we present (a) structural distortions induced by the solvent due to preferential solvation of the triplet excited state, and (b) the importance of dynamic solvation induced by vibronic coupling (pseudo-Jahn-Teller coupling). The examples include the effect of solvent on structure and reactivity of excited states of 2,2,2-trifluoroacetophenone (TFA). Based on the comparison of time resolved resonance Raman (TR3) data of TFA and other substituted acetophenone systems, it was found that change in solvent polarity indeed results in electronic state switching and structural changes in the excited state, which explains the trend in reactivity. Further, a TR3 study of fluoranil (FA) in the triplet excited state in solvents of varying polarities indicates that the structure of FA in the triplet excited state is determined by vibronic coupling effects and thus distorted structure. These experimental results have been well supported by density functional theoretical computational studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide NH chemical shifts and their temperature dependences have been monitored as a function of concentration for the decapeptide, Boc-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aib-OMe in CDCl3 (0.001-0.06M) and (CD3)2SO (0.001-0.03M). The chemical shifts and temperature coefficients for all nine NH groups show no significant concentration dependence in (CD3)2SO. Seven NH groups yield low values of temperature coefficients over the entire range, while one yields an intermediate value. In CDCl3, the Aib(1) NH group shows a large concentration dependence of both chemical shift and temperature coefficient, in contrast to the other eight NH groups. The data suggest that in (CD3)2SO, the peptide adopts a 310 helical conformation and is monomeric over the entire concentration range. In CDCl3, the 310 helical peptide associates at a concentration of 0.01M, with the Aib(1) NH involved in an intermolecular hydrogen bond. Association does not disrupt the intramolecular hydrogen-bonding pattern in the decapeptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article describes the synthesis, structure and magnetic investigations of a series of metal-organic framework compounds formed with Mn+2 and Ni+2 ions. The structures, determined using the single crystal X-ray diffraction, indicated that the structures possess two- and three-dimensional structures with magnetically active dimers, tetramers, chains, two-dimensional layers connected by polycarboxylic acids. These compounds provide good examples for the investigations of magnetic behaviour. Magnetic studies have been carried out using SQUID magnetometer in the range of 2-300 K and the behaviour indicates a predominant anti-ferromagnetic interactions, which appears to differ based on the M-O-C-O-M and/or the M-O-M (M = metal ions) linkages. Thus, compounds with carboxylate (Mn-O-C-O-Mn) connected ones, [C3N2H [Mn(H2O)''C6H3(COO)(3)''], I, [''Mn(H2O (3)''aEuroeC(12)H(8)O(COO)(2)'']center dot H2O, II, [''Mn(H2O)''aEuroeC(12)H(8)O(COO)(2)''], III, show simple anti-ferromagnetic behaviour. The compounds with Mn-O/OH-Mn connected dimer and tetramer units in [NaMn''C6H3(COO)(3)''], IV, [Mn-2(A mu(3)-OH) (H2O)(2)''C6H3(COO)(3)'']center dot 2H(2)O, V, show canted-antiferromagnetic and anti-ferromagnetic behaviour, respectively. The presence of infinite one-dimensional -Ni-OH-Ni- chains in the compound, [Ni-2(H2O)(A mu(3)-OH)(2)(C8H5NO4], VI, gives rise to ferromagnet-like behaviour at low temperatures. The compounds, [Mn-3''C6H3(COO)(3)''(2)], VII and [''Mn(OH)''(2)''C12H8O(COO)(2)''], VIII, have two-dimensional infinite -Mn-O/OH-Mn- layers with triangular magnetic lattices, which resemble the Kagome and brucite-like layer. The magnetic studies indicated canted-antiferromagnetic behaviour in both the cases. Variable temperature EPR and theoretical magnetic modelling studies have been carried out on selected compounds to probe the nature of the magnetic species and their interactions with them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new analogue of graphene containing boron, carbon and nitrogen (BCN) has been obtained by the reaction of high-surface-area activated charcoal with a mixture of boric acid and urea at 900 degrees C. X-ray photoelectron spectroscopy and electron energy-loss spectroscopy reveal the composition to be close to BCN. The X-ray diffraction pattern, high-resolution electron microscopy images and Raman spectrum indicate the presence of graphite-type layers with low sheet-to-sheet registry. Atomic force microscopy reveals the sample to consist of two to three layers of BCN, as in a few-layer graphene. BCN exhibits more electrical resistivity than graphene, but weaker magnetic features. BCN exhibits a surface area of 2911 m(2)g(-1), which is the highest value known for a BxCyNz composition. It exhibits high propensity for adsorbing CO2 (approximate to 100 wt %) at 195 K and a hydrogen uptake of 2.6 wt % at 77 K. A first-principles pseudopotential-based DFT study shows the stable structure to consist of BN3 and NB3 motifs. The calculations also suggest the strongest CO2 adsorption to occur with a binding energy of 3.7 kJ mol(-1) compared with 2.0 kJ mol(-1) on graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conformation, organization, and phase transitions of alkyl chains in organic-inorganic hybrids based on the double pervoskite-slab lead iodides, (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 (n = 11, 13, 15, 17) have been investigated by X-ray diffraction, calorimetry, and infrared vibrational spectroscopy. In these hybrid solids, double pervoskite (CH3NH3)Pb2I7 slabs are interleaved with alkyl ammonium chains with the anchored alkyl chains arranged as tilted bilayers and adopting a planar all-trans conformation at room temperature. The (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 compounds exhibit a single reversible phase transition above room temperature with the associated enthalpy change varying linearly with alkyl chain length. This transition corresponds to the melting in two-dimensions of the alkyl chains of the anchored bilayer and is characterized by increased conformational disorder of the methylene units of the chain and loss of tilt angle coherence leading to an increase in the interslab spacing. By monitoring features in the infrared spectra that are characteristic of the global conformation of the alkyl chains, a quantitative relation between conformational disorder and melting of the anchored bilayer is established. It is found that, irrespective of the alkyl chain length, melting occurs when at least 60% of the chains in the anchored bilayer of (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 have one or more gauche defects. This concentration is determined by the underlying lattice to which the alkyl chains are anchored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical functionalization of a Au electrode with a redox-active monolayer and the electroanalytical applications of the functionalized electrode are described. Reaction of the electrochemically derived o-quinone on the self-assembled monolayer (SAM) of 6-mercaptopurine (MPU) on a Au electrode gives a redox-active 4-(6-mercapto-purin-9-yl)benzene-1,2-diol (MPBD) self-assembly under optimized conditions. Electrochemical quartz crystal microbalance technique has been employed to follow the functionalization of the electrode in real time. Electrochemically derived o-quinone reacts at the N(9) position of the self-assembled MPU in neutral pH. Raman spectral measurement confirms the reaction of o-quinone on MPU self-assembly. MPBD shows a well-defined reversible redox response, characteristic of a surface-confined redox mediator at 0.21 V in neutral pH. The anodic peak potential (Epa) of MPBD shifts by −60 mV while changing the solution pH by 1 unit, indicating that the redox reaction involves two electrons and two protons. The surface coverage (Γ) of MPBD was 7.2 ± 0.3 × 10-12 mol/cm2. The apparent heterogeneous rate constant (ksapp) for MPBD was 268 ± 6 s-1. MPBD efficiently mediates the oxidation of nicotinamide adenine dinucleotide (NADH) and ascorbate (AA). A large decrease in the overpotential and significant increase in the peak current with respect to the unmodified electrode has been observed. Surface-confined MPBD has been successfully used for the amperometric sensing of NADH and AA in neutral pH at the nanomolar level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel synthesis of inorganic-organic hybrid films containing well dispersed and almost uniform size Ag nanoparticles in agar-agar matrix has been reported. The films are found to be highly stable for more than a year. The colloidal particles of Ag can be obtained in large quantities in the form of a film or in the gel form when dispersed in agar-agar or by dissolving in a suitable solvent as solution. Characterization has been done by UV-visible spectroscopy and TEM. The hybrid may be of interest to study third-order non-linear susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by a suggestion in our earlier work [G. Baskaran, Phys. Rev. B 65, 212505 (2002)], we study electron correlation driven superconductivity in doped graphene where on-site correlations are believed to be of intermediate strength. Using an extensive variational Monte Carlo study of the repulsive Hubbard model and a correlated ground state wave function, we show that doped graphene supports a superconducting ground state with a d+id pairing symmetry. We estimate superconductivity reaching room temperatures at an optimal doping of about 15%-20%. Our work suggests that correlations can stabilize superconductivity even in systems with intermediate coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel chromogenic thiourea based sensors 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl ether 1 and 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl methane 2 having nitrophenyl group as signaling unit have been synthesized and characterized by spectroscopic techniques and X-ray crystallography. The both sensors show visual detection, UV-vis and NMR spectral changes in presence of fluoride and cyanide anions in organic solvent as well as in aqueous medium. The absorption spectra indicated the formation of complex between host and guest is in 1:2 stoichiometric ratios. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enthused by the fascinating properties of graphene, we have prepared graphene analogues of BN by a chemical method with a control on the number of layers. The method involves the reaction of boric acid with urea, wherein the relative proportions of the two have been varied over a wide range. Synthesis with a high proportion of urea yields a product with a majority of 1-4 layers. The surface area of BN increases progressively with the decreasing number of layers, and the high surface area BN exhibits high CO, adsorption, but negligible H, adsorption. Few-layer BN has been solubilized by interaction with Lewis bases. We have used first-principles simulations to determine structure, phonon dispersion, and elastic properties of BN with planar honeycomb lattice-based n-layer forms. We find that the mechanical stability of BN with respect to out-of-plane deformation is quite different from that of graphene, as evident in the dispersion of their flexural modes. BN is softer than graphene and exhibits signatures of long-range ionic interactions in its optical phonons. Finally, structures with different stacking sequences of BN have comparable energies, suggesting relative abundance of slip faults, stacking faults, and structural inhomogeneities in multilayer BN.