273 resultados para Graph API
Resumo:
In the title compound, C11H8N6O4S, the plane of the coumarin aromatic ring is twisted by 17.2 (2)degrees with respect to the plane of the azide group bound to the methylene substituent, whereas it is twisted by 83.2 (2)degrees to the plane of the azide attached to the sulfonyl group. The crystal structure is stabilized by weak C-H center dot center dot center dot O interactions, leading to the formation of dimers with R-2(2)(12) graph-set motifs. These dimers are further linked by weak S-O center dot center dot center dot pi and pi-pi contacts centroid-centroid distance = 3.765 (2) angstrom], leading to the formation of a layered structure.
Resumo:
A polygon is said to be a weak visibility polygon if every point of the polygon is visible from some point of an internal segment. In this paper we derive properties of shortest paths in weak visibility polygons and present a characterization of weak visibility polygons in terms of shortest paths between vertices. These properties lead to the following efficient algorithms: (i) an O(E) time algorithm for determining whether a simple polygon P is a weak visibility polygon and for computing a visibility chord if it exist, where E is the size of the visibility graph of P and (ii) an O(n2) time algorithm for computing the maximum hidden vertex set in an n-sided polygon weakly visible from a convex edge.
Resumo:
his paper addresses the problem of minimizing the number of columns with superdiagonal nonzeroes (viz., spiked columns) in a square, nonsingular linear system of equations which is to be solved by Gaussian elimination. The exact focus is on a class of min-spike heuristics in which the rows and columns of the coefficient matrix are first permuted to block lower-triangular form. Subsequently, the number of spiked columns in each irreducible block and their heights above the diagonal are minimized heuristically. We show that ifevery column in an irreducible block has exactly two nonzeroes, i.e., is a doubleton, then there is exactly one spiked column. Further, if there is at least one non-doubleton column, there isalways an optimal permutation of rows and columns under whichnone of the doubleton columns are spiked. An analysis of a few benchmark linear programs suggests that singleton and doubleton columns can abound in practice. Hence, it appears that the results of this paper can be practically useful. In the rest of the paper, we develop a polynomial-time min-spike heuristic based on the above results and on a graph-theoretic interpretation of doubleton columns.
Resumo:
Let G be a simple, undirected, finite graph with vertex set V(G) and edge set E(C). A k-dimensional box is a Cartesian product of closed intervals a(1), b(1)] x a(2), b(2)] x ... x a(k), b(k)]. The boxicity of G, box(G) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional boxes, i.e. each vertex is mapped to a k-dimensional box and two vertices are adjacent in G if and only if their corresponding boxes intersect. Let P = (S, P) be a poset where S is the ground set and P is a reflexive, anti-symmetric and transitive binary relation on S. The dimension of P, dim(P) is the minimum integer l such that P can be expressed as the intersection of t total orders. Let G(P) be the underlying comparability graph of P. It is a well-known fact that posets with the same underlying comparability graph have the same dimension. The first result of this paper links the dimension of a poset to the boxicity of its underlying comparability graph. In particular, we show that for any poset P, box(G(P))/(chi(G(P)) - 1) <= dim(P) <= 2box(G(P)), where chi(G(P)) is the chromatic number of G(P) and chi(G(P)) not equal 1. The second result of the paper relates the boxicity of a graph G with a natural partial order associated with its extended double cover, denoted as G(c). Let P-c be the natural height-2 poset associated with G(c) by making A the set of minimal elements and B the set of maximal elements. We show that box(G)/2 <= dim(P-c) <= 2box(G) + 4. These results have some immediate and significant consequences. The upper bound dim(P) <= 2box(G(P)) allows us to derive hitherto unknown upper bounds for poset dimension. In the other direction, using the already known bounds for partial order dimension we get the following: (I) The boxicity of any graph with maximum degree Delta is O(Delta log(2) Delta) which is an improvement over the best known upper bound of Delta(2) + 2. (2) There exist graphs with boxicity Omega(Delta log Delta). This disproves a conjecture that the boxicity of a graph is O(Delta). (3) There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0, unless NP=ZPP.
Resumo:
We consider the problem of computing an approximate minimum cycle basis of an undirected non-negative edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. Although in most such applications any cycle basis can be used, a low weight cycle basis often translates to better performance and/or numerical stability. Despite the fact that the problem can be solved exactly in polynomial time, we design approximation algorithms since the performance of the exact algorithms may be too expensive for some practical applications. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time O(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time O(n(3+2/k) ), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega) ) bound. We also present a 2-approximation algorithm with expected running time O(M-omega root n log n), a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.
Resumo:
We consider the problem of matching people to items, where each person ranks a subset of items in an order of preference, possibly involving ties. There are several notions of optimality about how to best match a person to an item; in particular, popularity is a natural and appealing notion of optimality. A matching M* is popular if there is no matching M such that the number of people who prefer M to M* exceeds the number who prefer M* to M. However, popular matchings do not always provide an answer to the problem of determining an optimal matching since there are simple instances that do not admit popular matchings. This motivates the following extension of the popular matchings problem: Given a graph G = (A U 3, E) where A is the set of people and 2 is the set of items, and a list < c(1),...., c(vertical bar B vertical bar)> denoting upper bounds on the number of copies of each item, does there exist < x(1),...., x(vertical bar B vertical bar)> such that for each i, having x(i) copies of the i-th item, where 1 <= xi <= c(i), enables the resulting graph to admit a popular matching? In this paper we show that the above problem is NP-hard. We show that the problem is NP-hard even when each c(i) is 1 or 2. We show a polynomial time algorithm for a variant of the above problem where the total increase in copies is bounded by an integer k. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a hybrid solar cooking system where the solar energy is brought to the kitchen. The energy source is a combination of the solar thermal energy and the Liquefied Petroleum Gas (LPG) that is in common use in kitchens. The solar thermal energy is transferred to the kitchen by means of a circulating fluid. The transfer of solar heat is a twofold process wherein the energy from the collector is transferred first to an intermediate energy storage buffer and the energy is subsequently transferred from the buffer to the cooking load. There are three parameters that are controlled in order to maximize the energy transfer from the collector to the load viz, the fluid flow rate from collector to buffer, fluid flow rate from buffer to load and the diameter of the pipes. This is a complex multi energy domain system comprising energy flow across several domains such as thermal, electrical and hydraulic. The entire system is modeled using the bond graph approach with seamless integration of the power flow in these domains. A method to estimate different parameters of the practical cooking system is also explained. Design and life cycle costing of the system is also discussed. The modeled system is simulated and the results are validated experimentally. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an efficient Simulated Annealing with valid solution mechanism for finding an optimum conflict-free transmission schedule for a broadcast radio network. This is known as a Broadcast Scheduling Problem (BSP) and shown as an NP-complete problem, in earlier studies. Because of this NP-complete nature, earlier studies used genetic algorithms, mean field annealing, neural networks, factor graph and sum product algorithm, and sequential vertex coloring algorithm to obtain the solution. In our study, a valid solution mechanism is included in simulated annealing. Because of this inclusion, we are able to achieve better results even for networks with 100 nodes and 300 links. The results obtained using our methodology is compared with all the other earlier solution methods.
Resumo:
An (alpha, beta)-spanner of an unweighted graph G is a subgraph H that distorts distances in G up to a multiplicative factor of a and an additive term beta. It is well known that any graph contains a (multiplicative) (2k - 1, 0)-spanner of size O(n(1+1/k)) and an (additive) (1, 2)-spanner of size O(n(3/2)). However no other additive spanners are known to exist. In this article we develop a couple of new techniques for constructing (alpha, beta)-spanners. Our first result is an additive (1, 6)-spanner of size O(n(4/3)). The construction algorithm can be understood as an economical agent that assigns costs and values to paths in the graph, purchasing affordable paths and ignoring expensive ones, which are intuitively well approximated by paths already purchased. We show that this path buying algorithm can be parameterized in different ways to yield other sparseness-distortion tradeoffs. Our second result addresses the problem of which (alpha, beta)-spanners can be computed efficiently, ideally in linear time. We show that, for any k, a (k, k - 1)-spanner with size O(kn(1+1/k)) can be found in linear time, and, further, that in a distributed network the algorithm terminates in a constant number of rounds. Previous spanner constructions with similar performance had roughly twice the multiplicative distortion.
Resumo:
Tutte (1979) proved that the disconnected spanning subgraphs of a graph can be reconstructed from its vertex deck. This result is used to prove that if we can reconstruct a set of connected graphs from the shuffled edge deck (SED) then the vertex reconstruction conjecture is true. It is proved that a set of connected graphs can be reconstructed from the SED when all the graphs in the set are claw-free or all are P-4-free. Such a problem is also solved for a large subclass of the class of chordal graphs. This subclass contains maximal outerplanar graphs. Finally, two new conjectures, which imply the edge reconstruction conjecture, are presented. Conjecture 1 demands a construction of a stronger k-edge hypomorphism (to be defined later) from the edge hypomorphism. It is well known that the Nash-Williams' theorem applies to a variety of structures. To prove Conjecture 2, we need to incorporate more graph theoretic information in the Nash-Williams' theorem.
Resumo:
CD-ROMs have proliferated as a distribution media for desktop machines for a large variety of multimedia applications (targeted for a single-user environment) like encyclopedias, magazines and games. With CD-ROM capacities up to 3 GB being available in the near future, they will form an integral part of Video on Demand (VoD) servers to store full-length movies and multimedia. In the first section of this paper we look at issues related to the single- user desktop environment. Since these multimedia applications are highly interactive in nature, we take a pragmatic approach, and have made a detailed study of the multimedia application behavior in terms of the I/O request patterns generated to the CD-ROM subsystem by tracing these patterns. We discuss prefetch buffer design and seek time characteristics in the context of the analysis of these traces. We also propose an adaptive main-memory hosted cache that receives caching hints from the application to reduce the latency when the user moves from one node of the hyper graph to another. In the second section we look at the use of CD-ROM in a VoD server and discuss the problem of scheduling multiple request streams and buffer management in this scenario. We adapt the C-SCAN (Circular SCAN) algorithm to suit the CD-ROM drive characteristics and prove that it is optimal in terms of buffer size management. We provide computationally inexpensive relations by which this algorithm can be implemented. We then propose an admission control algorithm which admits new request streams without disrupting the continuity of playback of the previous request streams. The algorithm also supports operations such as fast forward and replay. Finally, we discuss the problem of optimal placement of MPEG streams on CD-ROMs in the third section.
Resumo:
Management of large projects, especially the ones in which a major component of R&D is involved and those requiring knowledge from diverse specialised and sophisticated fields, may be classified as semi-structured problems. In these problems, there is some knowledge about the nature of the work involved, but there are also uncertainties associated with emerging technologies. In order to draw up a plan and schedule of activities of such a large and complex project, the project manager is faced with a host of complex decisions that he has to take, such as, when to start an activity, for how long the activity is likely to continue, etc. An Intelligent Decision Support System (IDSS) which aids the manager in decision making and drawing up a feasible schedule of activities while taking into consideration the constraints of resources and time, will have a considerable impact on the efficient management of the project. This report discusses the design of an IDSS that helps in project planning phase through the scheduling phase. The IDSS uses a new project scheduling tool, the Project Influence Graph (PIG).
Resumo:
The boxicity of a graph G is defined as the minimum integer k such that G is an intersection graph of axis-parallel k-dimensional boxes. Chordal bipartite graphs are bipartite graphs that do not contain an induced cycle of length greater than 4. It was conjectured by Otachi, Okamoto and Yamazaki that chordal bipartite graphs have boxicity at most 2. We disprove this conjecture by exhibiting an infinite family of chordal bipartite graphs that have unbounded boxicity.
Resumo:
A differential pulse polarographic (DPP) method based on the adsorption catalytic current in a medium containing chlorate and 8-hydroxyquinoline (oxine) is suggested for the determination of molybdenum(VI). Experimental conditions such as pH and the composition of supporting electrolyte have been optimized to get a linear calibration graph at trace levels of Mo(VI). The sensitivity for molybdenum can be considerably enhanced by this method. The influence of possible interferences on the catalytic current has been investigated. The sensitivity of the method is compared with those obtained for other DPP methods for molybdenum. A detection limit of 1.0 x 10(-8) mol/L has been found.
Resumo:
Ligand-induced conformational changes in proteins are of immense functional relevance. It is a major challenge to elucidate the network of amino acids that are responsible for the percolation of ligand-induced conformational changes to distal regions in the protein from a global perspective. Functionally important subtle conformational changes (at the level of side-chain noncovalent interactions) upon ligand binding or as a result of environmental variations are also elusive in conventional studies such as those using root-mean-square deviations (r.m.s.d.s). In this article, the network representation of protein structures and their analyses provides an efficient tool to capture these variations (both drastic and subtle) in atomistic detail in a global milieu. A generalized graph theoretical metric, using network parameters such as cliques and/or communities, is used to determine similarities or differences between structures in a rigorous manner. The ligand-induced global rewiring in the protein structures is also quantified in terms of network parameters. Thus, a judicious use of graph theory in the context of protein structures can provide meaningful insights into global structural reorganizations upon perturbation and can also be helpful for rigorous structural comparison. Data sets for the present study include high-resolution crystal structures of serine proteases from the S1A family and are probed to quantify the ligand-induced subtle structural variations.