138 resultados para Ge-nanowires


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A heterostructure of graphene and zinc oxide (ZnO) nanowires (NWs) is fabricated by sandwiching an array of ZnO NWs between two graphene layers for an ultraviolet (UV) photodetector. This unique structure allows NWs to be in direct contact with the graphene layers, minimizing the effect of the substrate or metal electrodes. In this device, graphene layers act as highly conducting electrodes with a high mobility of the generated charge carriers. An excellent sensitivity is demonstrated towards UV illumination, with a reversible photoresponse even for a short period of UV illumination. Response and recovery times of a few milliseconds demonstrated a much faster photoresponse than most of the conventional ZnO nanostructure-based photodetectors. It is shown that the generation of a built-in electric field between the interface of graphene and ZnO NWs effectively contributes to the separation of photogenerated electron-hole pairs for photocurrent generation without applying any external bias. Upon application of external bias voltage, the electric field further increases the drift velocity of photogenerated electrons by reducing the charge recombination rates, and results in an enhancement of the photocurrent. Therefore, the graphene-based heterostructure (G/ZnO NW/G) opens avenues to constructing a novel heterostructure with a combination of two functionally dissimilar materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A heterostructure of graphene and zinc oxide (ZnO) nanowires (NWs) is fabricated by sandwiching an array of ZnO NWs between two graphene layers for an ultraviolet (UV) photodetector. This unique structure allows NWs to be in direct contact with the graphene layers, minimizing the effect of the substrate or metal electrodes. In this device, graphene layers act as highly conducting electrodes with a high mobility of the generated charge carriers. An excellent sensitivity is demonstrated towards UV illumination, with a reversible photoresponse even for a short period of UV illumination. Response and recovery times of a few milliseconds demonstrated a much faster photoresponse than most of the conventional ZnO nanostructure-based photodetectors. It is shown that the generation of a built-in electric field between the interface of graphene and ZnO NWs effectively contributes to the separation of photogenerated electron-hole pairs for photocurrent generation without applying any external bias. Upon application of external bias voltage, the electric field further increases the drift velocity of photogenerated electrons by reducing the charge recombination rates, and results in an enhancement of the photocurrent. Therefore, the graphene-based heterostructure (G/ZnO NW/G) opens avenues to constructing a novel heterostructure with a combination of two functionally dissimilar materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of ZnO nanowires in ambient air at 650 degrees C by a single-step vapor transport method using two different sources Zn (ZnO nanowires-I) and Zn:Cu (ZnO nanowires-II). The Zn:Cu mixed source co-vaporize Zn with a small amount of Cu at temperatures where elemental Cu source does not vaporize. This method provides us a facile route for Cu doping into ZnO. The aspect ratio of the grown ZnO nanowires-II was found to be higher by more than five times compared ZnO nanowires-I. Photocatalytic activity was measured by using a solar simulator and its ultraviolet-filtered light. The ZnO nanowires-II shows higher catalytic activity due to increased aspect ratio and higher content of surface defects because of incorporation of Cu impurities.