169 resultados para Gateway National Recreation Area (N.J. and N.Y.)--Maps.
Resumo:
Evidence is presented for the strong interaction of oxygen and nitrogen with solid films of buckminsterfullerene based on core-level spectroscopic studies. Cr, Ni and Cu deposited on C60 films interact strongly giving rise to large changes in the C(Is) and C(2p) binding energies as well as the (2p) binding energies of the transition metals.
Resumo:
DNA triple helices containing two purine strands and one pyrimidine strand (C.G*G and T.A*A) have been studied, using model building followed by energy minimisation, for different orientations of the third strand resulting from variation in the hydrogen bonding between the Watson-Crick duplex and the third strand and the glycosidic torsion angle in the third strand. Our results show that in the C.G*G case the structure with a parallel orientation of the third strand, resulting from Hoogsteen hydrogen bonds between the third strand and the Watson-Crick duplex, is energetically the most favourable while in the T.A*A case the antiparallel orientation of the third strand, resulting from reverse Hoogsteen hydrogen bonds, is energetically the most favourable. These studies when extended to the mixed sequence triplexes, in which the second strand is a mixture of G and A, correspondingly the third strand is a mixture of G and APT, show that though the parallel orientation is still energetically more favourable, the antiparallel orientation becomes energetically comparable with an increasing number of thymines in the third strand. Structurally, for the mixed triplexes containing G and T in the third strand, it is seen that the basepair non-isomorphism between the C.G*G and the T.A*T triplets can be overcome with some changes in the base pair parameters without much distortion of either the backbone or the hydrogen bonds.
Resumo:
Polyclonal antibodies were raised against the Physalis mottle virus (PhMV) and its denatured coat protein (PhMV-P). Analysis of the reactivity of the polyclonal antibodies with tryptic peptides of PhMV-P in dot-blot assays revealed that many of the epitopes were common to intact virus and denatured coat protein. Five monoclonal antibodies to the intact virus were obtained using hybridoma technology. These monoclonal antibodies reacted well with the denatured coat protein. Epitope analysis suggested that probably these monoclonal antibodies recognize overlapping epitopes. This was substantiated by epitope mapping using the CNBr digest of PhMV-P in western blots. All the five monoclonals recognized the N-terminal 15 K fragment. Attempts to further delineate the specific region recognized by the monoclonals by various enzymatic cleavages resulted in the loss of reactivity in all the cases. The results indicate that these monoclonals probably recognize epitopes within the N-terminal 15 K fragment of the coat protein.
Resumo:
A strategy for the modular construction of synthetic protein mimics based on the ability non-protein amino acids to act as stereochemical directors of polypeptide chain folding, is described. The use of alpha-aminoisobutyric acid (Aib) to construct stereochemically rigid helices has been exemplified by crystallographic and spectroscopic studies of several apolar peptides, ranging in length from seven to sixteen residues. The problem of linker design in elaborating alpha,alpha motifs has been considered. Analysis of protein crystal structure data provides a guide to choosing linking sequences. Attempts at constructing linked helical motifs using linking Gly-Pro segments have been described. The use of flexible linkers, like epsilon-aminocaproic acid has been examined and the crystallographic and solution state analysis of a linked helix motif has been presented. The use of bulky sidechain modifications on a helical scaffold, as a means of generating putative binding sites has been exemplified by a crystal structure of a peptide packed in a parallel zipper arrangement.
Resumo:
The similar to 2500 km long Himalayan arc has experienced three large to great earthquakes of M-w 7.8 to 8.4 during the past century, but none produced surface rupture. Paleoseismic studies have been conducted during the last decade to begin understanding the timing, size, rupture extent, return period, and mechanics of the faulting associated with the occurrence of large surface rupturing earthquakes along the similar to 2500 km long Himalayan Frontal Thrust (HFT) system of India and Nepal. The previous studies have been limited to about nine sites along the western two-thirds of the HFT extending through northwest India and along the southern border of Nepal. We present here the results of paleoseismic investigations at three additional sites further to the northeast along the HFT within the Indian states of West Bengal and Assam. The three sites reside between the meizoseismal areas of the 1934 Bihar-Nepal and 1950 Assam earthquakes. The two westernmost of the sites, near the village of Chalsa and near the Nameri Tiger Preserve, show that offsets during the last surface rupture event were at minimum of about 14 m and 12 m, respectively. Limits on the ages of surface rupture at Chalsa (site A) and Nameri (site B), though broad, allow the possibility that the two sites record the same great historical rupture reported in Nepal around A.D. 1100. The correlation between the two sites is supported by the observation that the large displacements as recorded at Chalsa and Nameri would most likely be associated with rupture lengths of hundreds of kilometers or more and are on the same order as reported for a surface rupture earthquake reported in Nepal around A.D. 1100. Assuming the offsets observed at Chalsa and Nameri occurred synchronously with reported offsets in Nepal, the rupture length of the event would approach 700 to 800 km. The easternmost site is located within Harmutty Tea Estate (site C) at the edges of the 1950 Assam earthquake meizoseismal area. Here the most recent event offset is relatively much smaller (<2.5 m), and radiocarbon dating shows it to have occurred after A.D. 1100 (after about A.D. 1270). The location of the site near the edge of the meizoseismal region of the 1950 Assam earthquake and the relatively lesser offset allows speculation that the displacement records the 1950 M-w 8.4 Assam earthquake. Scatter in radiocarbon ages on detrital charcoal has not resulted in a firm bracket on the timing of events observed in the trenches. Nonetheless, the observations collected here, when taken together, suggest that the largest of thrust earthquakes along the Himalayan arc have rupture lengths and displacements of similar scale to the largest that have occurred historically along the world's subduction zones.