224 resultados para Gaseous diffusion plants.
Resumo:
Sugars perform two vital functions in plants: as compatible solutes protecting the cell against osmotic stress and as mobile source of immediate and long-term energy requirement for growth and development. The two sugars that occur commonly in nature are sucrose and trehalose. Sucrose comprises one glucose and one fructose molecule; trehalose comprises two glucose molecules. Trehalose occurs in significant amounts in insects and fungi which greatly outnumber the plants. Surprisingly, in plants trehalose has been found in barely detectable amounts, if at all, raising the question `why did nature select sucrose instead of trehalose as the mobile energy source and as storage sugar for the plants'? Modelling revealed that when attached to the ribbon-shaped beta-1,4 glucan a trehalose molecule is shaped like a hook. This suggests that the beta-1,4 glucan chains with attached trehalose will fail to align to form inter-chain hydrogen bonds and coalesce into a cellulose microfibril, as a result of which in trehalose-accumulating plant cells, the cell wall will tend to become leaky. Thus in plants an evolutionary selection was made in favour of sucrose as the mobile energy source. Genetic engineering of plant cells for combating abiotic stresses through microbial trehalose-producing genes is fraught with risk of damage to plant cell walls.
Resumo:
Soot particles are generated in a flame caused by burning ethylene gas. The particles are collected thermophoretically at different locations of the flame. The particles are used to lubricate a steel/steel ball on flat reciprocating sliding contact, as a dry solid lubricant and also as suspended in hexadecane. Reciprocating contact is shown to establish a protective and low friction tribo-film. The friction correlates with the level of graphitic order of the soot, which is highest in the soot extracted from the mid-flame region and is low in the soot extracted from the flame root and flame tip regions. Micro-Raman spectroscopy of the tribo-film shows that the a priori graphitic order, the molecular carbon content of the soot and the graphitization of the film as brought about by tribology distinguish between the frictions of soot extracted from different regions of the flame, and differentiate the friction associated with dry tribology from that recorded under lubricated tribology.
Resumo:
Abstract | A growing interest in the research of chalcogenide glasses can be currently witnessed, which to a large extent is caused by newly opened fields of applications for these materials. Applications in the field of micro- and opto-electronics, xerography and lithography, acousto-optic and memory switching devices and detectors for medical imaging seem to be most remarkable. Accordingly, photo induced phenomena in chalcogenide glasses are attracting much interest. These phenomena can be found both in uniform thin films as well as multilayered films. Among amorphous multilayers, chalcogenide multilayers are attractive because of the potential it has for tailoring the optical properties. I will be presenting some basic idea of photoinduced effects followed by the diffusion mechanisms of Se, Sb and Bi in to As2S3 films.
Resumo:
The inception of cavitation in the steady flow of liquids around bodies is seen to depend upon the real fluid flow around the bodies as well as the supply of nucleating cavitation sources—or nuclei—within the fluid. A primary distinction is made between bodies having a laminar separation or not having a laminar separation. The former group is relatively insensitive to the nuclei concentration whereas the latter is much more sensitive. Except for the case of fully separated wake flows and for gaseous cavitation by diffusion the cavitation inception index tends always to be less than the magnitude of the minimum pressure coefficient and only approaches that value for high Reynolds numbers in flows well supplied with nuclei.
Resumo:
The relations for the growth and consumption rates of a layer with finite thickness as an end member and the product phases in the interdiffusion zone are developed. We have used two different methodologies, the diffusion based and the physico-chemical approach to develop the same relations. We have shown that the diffusion based approach is rather straightforward; however, the physico-chemical approach is much more versatile than the other method. It was found that the position of the marker plane becomes vague in the second stage of the interdiffusion process in pure A thin layer/B couple, where two phases grow simultaneously.
Resumo:
Ethylene gas is burnt and the carbon soot particles are thermophoretically collected using a home-built equipment where the fuel air injection and intervention into the 7.5-cm long flame are controlled using three small pneumatic cylinders and computer-driven controllers. The physical and mechanical properties and tribological performance of the collected soot are compared with those of carbon black and diesel soot. The crystalline structures of the nanometric particles generated in the flame, as revealed by high-resolution transmission electron studies, are shown to vary from the flame root to the exhaust. As the particle journeys upwards the flame, through a purely amorphous coagulated phase at the burner nozzle, it leads to a well-defined crystalline phase shell in the mid-flame zone and to a disordered phase consisting of randomly distributed short-range crystalline order at the exhaust. In the mid-flame region, a large shell of radial-columnar order surrounds a dense amorphous core. The hardness and wear resistance as well as friction coefficient of the soot extracted from this zone are low. The mechanical properties characteristics of this zone may be attributed to microcrystalline slip. Moving towards the exhaust, the slip is inhibited and there is an increase in hardness and friction compared to those in the mid-flame zone. This study of the comparison of flame soot to carbon black and diesel soot is further extended to suggest a rationale based on additional physico-chemical study using micro-Raman spectroscopy.
Resumo:
A transient flame simulation tool based on unsteady Reynolds average Navier Stokes (RANS) is characterized for stationary and nonstationary flame applications with a motivation of performing computationally affordable flame stability studies. Specifically, the KIVA-3V code is utilized with incorporation of a recently proposed modified eddy dissipation concept for simulating turbulence-chemistry interaction along with a model for radiation loss. Detailed comparison of velocities, turbulent kinetic energies, temperature, and species are made with the experimental data of the turbulent, non-premixed DLR_A CH4/H-2/N-2 jet flame. The comparison shows that the model is able to predict flame structure very well. The effect of some of the modeling assumptions is assessed, and strategies to model a stationary diffusion flame are recommended. Unsteady flame simulation capabilities of the numerical model are assessed by simulating an acoustically excited, experimental, oscillatory H-2-air diffusion flame. Comparisons are made with oscillatory velocity field and OH plots, and the numerical code is observed to predict transient flame structure well.
Resumo:
The effects of Mo, Ti, and Zr on the diffusion and growth of the Nb(X)Si-2 and Nb(X)(5)Si-3 phases in an Nb(X)-Si system are analyzed. The integrated diffusion coefficients are determined from diffusion couple experiments and compared with the data previously calculated in a binary Nb-Si system. The growth rates of both phases are affected by the addition of Mo and Zr, whereas the addition of Ti has no effect. The atomic mechanism of diffusion is also discussed based on the crystal structure and the possible changes in the defect concentrations due to alloying. Finally, the growth mechanism of the phases is discussed on the basis of a physico-chemical approach. (C) 2011 Elsevier Ltd. All rights reserved.
Decoupling of diffusion from viscosity: Difference scenario for translational and rotational motions
Resumo:
Recent experiments have indicated a dramatically different viscosity dependence of the translational and the rotational diffusion coefficients in a supercooled liquid as the glass transition temperature is approached from above. While the translational motion seems to be decoupled from the rising viscosity (eta), the rotational motion seems to remain firmly coupled to eta. In order to understand the microscopic origin of this behavior, we have carried nut detailed theoretical calculations of both the quantities by using a self-consistent mode-coupling theory (MCT). it is found that when the size of the solute is same as that of the solvent molecules, the conventional MCT fails to predict the observed decoupling. The solvent inhomogeneity is found to play a decisive role in determining the decoupling. The difference in the viscosity dependence between rotation and translational diffusion coefficient is discussed.
Resumo:
This is an introduction to the theory of interacting Brownian particles, as applied to charge-stabilised colloidal suspensions near their equilibrium liquid-solid transition. The density functional approach to the statics of the transition is reviewed briefly, and the generalised Langevin equation method for the dynamics presented in detail. Work with A.V. Indrani [1] on a self-consistent approach for calculating the excess single-particle friction is presented, which explains the observed [2] ''universal'' suppression of self-diffusion at freezing as a consequence of the universal structure-factor height at this transition. Criticisms, open questions, and challenges to theory are discussed.