160 resultados para GRAVITY SEWERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper based on the basic principles of gauge/gravity duality we compute the hall viscosity to entropy ratio in the presence of various higher derivative corrections to the dual gravitational description embedded in an asymptotically AdS(4) space time. As the first step of our analysis, considering the back reaction we impose higher derivative corrections to the abelian gauge sector of the theory where we notice that the ratio indeed gets corrected at the leading order in the coupling. Considering the probe limit as a special case we compute this leading order correction over the fixed background of the charged black brane solution. Finally we consider higher derivative (R-2) correction to the gravity sector of the theory where we notice that the above ratio might get corrected at the sixth derivative level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, linear stability analysis on a Newtonian fluid film flowing under the effect of gravity over an inclined porous medium saturated with the same fluid in isothermal condition is carried out. The focus is placed on the effect of the anisotropic and inhomogeneous variations in the permeability of the porous medium on the shear mode and surface mode instabilities. The fluid-porous system is modelled by a coupled two-dimensional Navier-Stokes/Darcy problem. The perturbation equations are solved numerically using the Chebyshev collocation method. Detailed stability characteristics as a function of the depth ratio (the ratio of the depth of the fluid layer to that of the porous layer), the anisotropic parameter (the ratio of the permeability in the direction of the basic flow to that in the direction transverse to the basic flow) and the inhomogeneity functions are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we applied the integration methodology developed in the companion paper by Aires (2014) by using real satellite observations over the Mississippi Basin. The methodology provides basin-scale estimates of the four water budget components (precipitation P, evapotranspiration E, water storage change Delta S, and runoff R) in a two-step process: the Simple Weighting (SW) integration and a Postprocessing Filtering (PF) that imposes the water budget closure. A comparison with in situ observations of P and E demonstrated that PF improved the estimation of both components. A Closure Correction Model (CCM) has been derived from the integrated product (SW+PF) that allows to correct each observation data set independently, unlike the SW+PF method which requires simultaneous estimates of the four components. The CCM allows to standardize the various data sets for each component and highly decrease the budget residual (P - E - Delta S - R). As a direct application, the CCM was combined with the water budget equation to reconstruct missing values in any component. Results of a Monte Carlo experiment with synthetic gaps demonstrated the good performances of the method, except for the runoff data that has a variability of the same order of magnitude as the budget residual. Similarly, we proposed a reconstruction of Delta S between 1990 and 2002 where no Gravity Recovery and Climate Experiment data are available. Unlike most of the studies dealing with the water budget closure at the basin scale, only satellite observations and in situ runoff measurements are used. Consequently, the integrated data sets are model independent and can be used for model calibration or validation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a system consisting of 5 dimensional gravity with a negative cosmological constant coupled to a massless scalar, the dilaton. We construct a black brane solution which arises when the dilaton satisfies linearly varying boundary conditions in the asymptotically AdS(5) region. The geometry of this black brane breaks rotational symmetry while preserving translational invariance and corresponds to an anisotropic phase of the system. Close to extremality, where the anisotropy is big compared to the temperature, some components of the viscosity tensor become parametrically small compared to the entropy density. We study the quasi normal modes in considerable detail and find no instability close to extremality. We also obtain the equations for fluid mechanics for an anisotropic driven system in general, working upto first order in the derivative expansion for the stress tensor, and identify additional transport coefficients which appear in the constitutive relation. For the fluid of interest we find that the parametrically small viscosity can result in a very small force of friction, when the fluid is enclosed between appropriately oriented parallel plates moving with a relative velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systematic experiments have been carried out by monitoring the in-situ pressure and thickness profiles for three different configurations, viz., flat plate, flat plate with a central circular hole, and an L-section using vacuum assisted resin transfer molding (VARTM) process. The effect of anisotropy on resin flow has been quantified by considering uni-directional carbon fiber preforms with 0 degrees and 90 degrees orientation to the flow direction for each configuration. A quasi-isotropic 45 degrees/0 degrees/-45 degrees/90 degrees](S) layup has also been included for flat plate case. Additionally, the study has been extended to understand the effect of using high permeability medium for each configuration. Fluid pressure profiles and thickness variation profiles have been obtained using an array of pressure sensors and linear variable differential transformers for each configuration. Experimental data reveal that anisotropy (due to changing fiber orientations), configuration, and gravity significantly change fluid pressure and displacement fields obtained during VARTM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that interpreting the inverse AdS(3) radius 1/l as a Grassmann variable results in a formal map from gravity in AdS(3) to gravity in flat space. The underlying reason for this is the fact that ISO(2, 1) is the Inonu-Wigner contraction of SO(2, 2). We show how this works for the Chern-Simons actions, demonstrate how the general (Banados) solution in AdS(3) maps to the general flat space solution, and how the Killing vectors, charges and the Virasoro algebra in the Brown-Henneaux case map to the corresponding quantities in the BMS3 case. Our results straightforwardly generalize to the higher spin case: the recently constructed flat space higher spin theories emerge automatically in this approach from their AdS counterparts. We conclude with a discussion of singularity resolution in the BMS gauge as an application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine relative entropy in the context of the higher spin/CFT duality. We consider 3D bulk configurations in higher spin gravity which are dual to the vacuum and a high temperature state of a CFT with W-algebra symmetries in the presence of a chemical potential for a higher spin current. The relative entropy between these states is then evaluated using the Wilson line functional for holographic entanglement entropy. In the limit of small entangling intervals, the relative entropy should vanish for a generic quantum system. We confirm this behavior by showing that the difference in the expectation values of the modular Hamiltonian between the states matches with the difference in the entanglement entropy in the short-distance regime. Additionally, we compute the relative entropy of states corresponding to smooth solutions in the SL(2, Z) family with respect to the vacuum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variations in surface water extent and storage are poorly characterized from regional to global scales. In this study, a multi-satellite approach is proposed to estimate the water stored in the floodplains of the Orinoco Basin at a monthly time-scale using remotely-sensed observations of surface water from the Global Inundation Extent Multi-Satellite (GIEMS) and stages from Envisat radar altimetry. Surface water storage variations over 2003-2007 exhibit large interannual variability and a strong seasonal signal, peaking during summer, and associated with the flood pulse. The volume of surface water storage in the Orinoco Basin was highly correlated with the river discharge at Ciudad Bolivar (R = 0.95), the closest station to the mouth where discharge was estimated, although discharge lagged one month behind storage. The correlation remained high (R = 0.73) after removing seasonal effects. Mean annual variations in surface water volume represented similar to 170 km(3), contributing to similar to 45% of the Gravity Recovery and Climate Experiment (GRACE)-derived total water storage variations and representing similar to 13% of the total volume of water that flowed out of the Orinoco Basin to the Atlantic Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, effect of pouring temperature (650 degrees C, 655 degrees C, and 660 degrees C) on semi-solid microstructure evolution of in-situ magnesium silicide (Mg2Si) reinforced aluminum (Al) alloy composite has been studied. The shear force exerted by the cooling slope during gravity driven flow of the melt facilitates the formation of near spherical primary Mg2Si and primary Al grains. Shear driven melt flow along the cooling slope and grain fragmentation have been identified as the responsible mechanisms for refinement of primary Mg2Si and Al grains with improved sphericity. Results show that, while flowing down the cooling slope, morphology of primary Mg2Si and primary Al transformed gradually from coarse dendritic to mixture of near spherical particles, rosettes, and degenerated dendrites. In terms of minimum grain size and maximum sphericity, 650 degrees C has been identified as the ideal pouring temperature for the cooling slope semi-solid processing of present Al alloy composite. Formation of spheroidal grains with homogeneous distribution of reinforcing phase (Mg2Si) improves the isotropic property of the said composite, which is desirable in most of the engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the null orbifold singularity in 2+1 d flat space higher spin theory as well as string theory. Using the Chern-Simons formulation of 2+1 d Einstein gravity, we first observe that despite the singular nature of this geometry, the eigenvalues of its Chern-Simons holonomy are trivial. Next, we construct a resolution of the singularity in higher spin theory: a Kundt spacetime with vanishing scalar curvature invariants. We also point out that the UV divergences previously observed in the 2-to-2 tachyon tree level string amplitude on the null orbifold do not arise in the at alpha' -> infinity limit. We find all the divergences of the amplitude and demonstrate that the ones remaining in the tensionless limit are physical IR-type divergences. We conclude with a discussion on the meaning and limitations of higher spin (cosmological) singularity resolution and its potential connection to string theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of combined additions of Ca and Sb on the microstructure and tensile properties of AZ91D alloy fabricated by squeeze-casting have been investigated. For comparison, the same has also been studied with and without individual additions of Ca and Sb. The results indicate that both individual and combined additions refine the grain size and beta-Mg17Al12 phase, which is more pronounced with combined additions. Besides alpha-Mg and beta-Mg17Al12 phases, a new reticular Al2Ca and rod-shaped Mg3Sb2 phases are formed following individual additions of Ca and Sb in the AZ91D alloy. With combined additions, an additional Ca2Sb phase is formed suppressing Mg3Sb2 phase. Additions of both Ca and Sb increase yield strength (YS) at both ambient and elevated temperatures up to 200 degrees C. However, both ductility and ultimate tensile strength (UTS) decrease first up to 150 degrees C and then increase at 200 degrees C. The increase in YS is attributed to the refinement of grain size, whereas, ductility and UTS are deteriorated by the presence of brittle Al2Ca, Mg3Sb2 and Ca2Sb phases. The best tensile properties are obtained in the AZXY9110 alloy owing to the presence of lesser amount of brittle Al2Ca and Ca2Sb phases resulted from the optimum content of 1.0Ca and 0.3Sb (wt%). The fracture surface of the tensile specimen tested at ambient temperature reveals cleavage failure that changes to quasi-cleavage at 200 degrees C. The squeeze-cast alloys exhibited better tensile properties as compared to that of the gravity-cast alloys nullifying the detrimental effects of Ca and/or Sb additions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cool cluster cores are in global thermal equilibrium but are locally thermally unstable. We study a non-linear phenomenological model for the evolution of density perturbations in the intracluster medium (ICM) due to local thermal instability and gravity. We have analysed and extended a model for the evolution of an overdense blob in the ICM. We find two regimes in which the overdense blobs can cool to thermally stable low temperatures. One for large t(cool)/t(ff) (t(cool) is the cooling time and t(ff) is the free-fall time), where a large initial overdensity is required for thermal runaway to occur; this is the regime which was previously analysed in detail. We discover a second regime for t(cool)/t(ff) less than or similar to 1 (in agreement with Cartesian simulations of local thermal instability in an external gravitational field), where runaway cooling happens for arbitrarily small amplitudes. Numerical simulations have shown that cold gas condenses out more easily in a spherical geometry. We extend the analysis to include geometrical compression in weakly stratified atmospheres such as the ICM. With a single parameter, analogous to the mixing length, we are able to reproduce the results from numerical simulations; namely, small density perturbations lead to the condensation of extended cold filaments only if t(cool)/t(ff) less than or similar to 10.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, using the Gauge/gravity duality techniques, we explore the hydrodynamic regime of a very special class of strongly coupled QFTs that come up with an emerging UV length scale in the presence of a negative hyperscaling violating exponent. The dual gravitational counterpart for these QFTs consists of scalar dressed black brane solutions of exactly integrable Einstein-scalar gravity model with Domain Wall (DW) asymptotics. In the first part of our analysis we compute the R-charge diffusion for the boundary theory and find that (unlike the case for the pure AdS (4) black branes) it scales quite non trivially with the temperature. In the second part of our analysis, we compute the eta/s ratio both in the non extremal as well as in the extremal limit of these special class of gauge theories and it turns out to be equal to 1/4 pi in both the cases. These results therefore suggest that the quantum critical systems in the presence of (negative) hyperscaling violation at UV, might fall under a separate universality class as compared to those conventional quantum critical systems with the usual AdS (4) duals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, based on the principles of gauge/gravity duality and considering the so called hydrodynamic limit we compute various charge transport properties for a class of strongly coupled non-relativistic CFTs corresponding to z=2 fixed point whose dual gravitational counter part could be realized as the consistent truncation of certain non-relativistic Dp branes in the non-extremal limit. From our analysis we note that unlike the case for the AdS black branes, the charge diffusion constant in the non-relativistic background scales differently with the temperature. This shows a possible violation of the universal bound on the charge conductivity to susceptibility ratio in the context of non-relativistic holography. (C) 2015 The Author. Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We argued in arXiv: 1408.0624 that the quartic scalar field in AdS has features that could be instructive for answering the gravitational stability question of AdS. Indeed, the conserved charges identified there have recently been observed in the full gravity theory as well. In this paper, we continue our investigation of the scalar field in AdS and provide evidence that in the Two-Time Formalism (TTF), even for initial conditions that are far from quasi-periodicity, the energy in the higher modes at late times is exponentially suppressed in the mode number. Based on this and some related observations, we argue that there is no thermalization in the scalar TTF model within time-scales that go as similar to 1/epsilon(2), where epsilon measures the initial amplitude (with only low-lying modes excited). It is tempting to speculate that the result holds also for AdS collapse. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.