168 resultados para Fluorogallate glass
Resumo:
Mesoporous quaternary bioactive glasses and glass-ceramic with alkali-alkaline-earth oxide were successfully synthesized by using non-ionic block copolymer P123 and evaporation induced self assembly (EISA) process followed by acid treatment assisted sal-gel method. As prepared samples has been characterized for the structural, morphological and textural properties with the various analytical techniques. Glass dissolution/ion release rate in simulated body fluid (SBF) was monitored by inductively coupled plasma (ICP) emission spectroscopy, whereas the formation of apatite phase and its crystallization at the glass and glass-ceramic surface was examined by structural, textural and microscopic probes. The influence of alkaline-earth oxide content on the glass structure followed by textural property has become more evident. The pristine glass samples exhibit a wormhole-like mesoporous structure, whereas the glass-ceramic composition is found to be in three different phases, namely crystalline hydroxyapatite, wollastonite and a residual glassy phase as observed in Cerabone (R) A/W. The existence of calcium orthophosphate phase is closely associated with the pore walls comprising nanometric-sized ``inclusions''. The observed high surface area in conjunction with the structural features provides the possible explanation for experimentally observed enhanced bioactivity through the easy access of ions to the fluid. On the other hand, presence of multiple phases in glass-ceramic sample inhibits or delays the kinetics of apatite formation. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Monophasic Ba2NaNb5O15 was crystallized at nanometer scale (12-36 nm) in 2BaO-0.5Na(2)O-2.5Nb(2)O(5)- 4.5B(2)O(3) glass system. To begin with, optically transparent glasses, in this system, were fabricated via the conventional melt. quenching technique. The amorphous and glassy characteristics of the as-quenched samples were respectively confirmed by X-ray powder diffraction and differential thermal analyses. Nearly homogeneous distribution of Ba2NaNb5O15 (BNN) nanocrystals associated with tungsten bronze structure akin to their bulk parent structure was accomplished by subjecting the as-fabricated glasses to appropriate heat-treatment temperatures. Indeed transmission electron microscopy (TEM) carried out on these samples corroborated the presence of Ba2NaNb5O15 nanocrystals dispersed in a continuous glass matrix. The as-quenched glasses were similar to 75% transparent in the visible range of the electromagnetic spectrum. The optical band gap and refractive index were found to have crystallite size (at nanoscale) dependence. The optical band gap increased with the decrease in crystallite size. The refractive indices of the glass nanocrystal composites as determined by Brewster angle method were rationalized using different empirical models. The refractive index dispersion with wavelength of light was analyzed on the basis of the Sellmeier relations. At room temperature under UV excitation (355 nm) these glass nanocrystal composites displayed violet-blue emission which was ascribed to the defects states.
Resumo:
We report results of the magnetization and ac susceptibility measurements down to very low fields on a single crystal of the perovskite manganite, La-0.82 Ca-0.18 MnO3. This composition falls in the intriguing ferromagnetic insulator region of the manganite phase diagram. In contrast to earlier beliefs, our investigations reveal that magnetically (and in every other sense), this is a single- phase system with a ferromagnetic ordering temperature of around 170 K. However, this ferromagnetic state is magnetically frustrated, and the system exhibits pronounced glassy dynamics below 90 K. Based on measured dynamical properties, we propose that this quasi-long-ranged ferromagnetic phase, and the associated superspin glass behavior, is the true magnetic state of the system, rather than being a macroscopic mixture of ferromagnetic and antiferromagnetic phases, as often suggested. Our results provide an understanding of the quantum phase transition from an antiferromagnetic insulator to a ferromagnetic metal via this ferromagnetic state as a function of x in La1-xCaxMnO3, in terms of the possible formation of magnetic polarons.
Resumo:
Glass micropipettes are versatile probing tools for performing micro-and nano-manipulation tasks. This paper presents the design and development of an automated pipette puller system for fabrication of glass micropipettes. The pipette puller employs a new strategy for fabrication of micropipettes that enables achieving independent control of their taper, tip diameter, and bend-angle, and also facilitates theoretical derivation of simple, approximate relationships between the pipette shape and the pulling parameters. Subsequently, the design and fabrication of the pipette puller is described, which include that of the pipette heating system, the mechanical motion stages, and the control electronics of the pipette puller. The fabricated pipette puller is experimentally evaluated to demonstrate control of the taper, tip diameter, and the bend-angle of the micropipette. Further, the dependence of the taper and tip diameter on the pulling parameters is evaluated and is shown to be in alignment with the proposed theoretical relationships. (C) 2014 AIP Publishing LLC.
Resumo:
The question of whether the dramatic slowing down of the dynamics of glass-forming liquids near the structural glass transition is caused by the growth of one or more correlation lengths has received much attention in recent years. Several proposals have been made for both static and dynamic length scales that may be responsible for the growth of timescales as the glass transition is approached. These proposals are critically examined with emphasis on the dynamic length scale associated with spatial heterogeneity of local dynamics and the static point-to-set or mosaic length scale of the random first order transition theory of equilibrium glass transition. Available results for these length scales, obtained mostly from simulations, are summarized, and the relation of the growth of timescales near the glass transition with the growth of these length scales is examined. Some of the outstanding questions about length scales in glass-forming liquids are discussed, and studies in which these questions may be addressed are suggested.
Resumo:
We present direct experimental signatures of a nonequilibrium phase transition associated with the yield point of a prototypical soft solid-a binary colloidal glass. By simultaneously quantifying single-particle dynamics and bulk mechanical response, we identified the threshold for the onset of irreversibility with the yield strain. We extracted the relaxation time from the transient behavior of the loss modulus and found that it diverges in the vicinity of the yield strain. This critical slowing down is accompanied by a growing correlation length associated with the size of regions of high Debye-Waller factor, which are precursors to yield events in glasses. Our results affirm that the paradigm of nonequilibrium critical phenomena is instrumental in achieving a holistic understanding of yielding in soft solids.
Resumo:
Amorphous solids prepared from their melt state exhibit glass transition phenomenon upon heating. Viscosity, specific heat, and thermal expansion coefficient of the amorphous solids show rapid changes at the glass transition temperature (T-g). Generally, application of high pressure increases the T-g and this increase (a positive dT(g)/dP) has been understood adequately with free volume and entropy models which are purely thermodynamic in origin. In this study, the electrical resistivity of semiconducting As2Te3 glass at high pressures as a function of temperature has been measured in a Bridgman anvil apparatus. Electrical resistivity showed a pronounced change at T-g. The T-g estimated from the slope change in the resistivity-temperature plot shows a decreasing trend (negative dT(g)/dP). The dT(g)/dP was found to be -2.36 degrees C/kbar for a linear fit and -2.99 degrees C/kbar for a polynomial fit in the pressure range 1 bar to 9 kbar. Chalcogenide glasses like Se, As2Se3, and As30Se30Te40 show a positive dT(g)/dP which is very well understood in terms of the thermodynamic models. The negative dT(g)/dP (which is generally uncommon in liquids) observed for As2Te3 glass is against the predictions of the thermodynamic models. The Adam-Gibbs model of viscosity suggests a direct relationship between the isothermal pressure derivative of viscosity and the relaxational expansion coefficient. When the sign of the thermal expansion coefficient is negative, dT(g)/dP = Delta k/Delta alpha will be less than zero, which can result in a negative dT(g)/dP. In general, chalcogenides rich in tellurium show a negative thermal expansion coefficient (NTE) in the supercooled and stable liquid states. Hence, the negative dT(g)/dP observed in this study can be understood on the basis of the Adams-Gibbs model. An electronic model proposed by deNeufville and Rockstad finds a linear relation between T-g and the optical band gap (E-g for covalent semiconducting glasses when they are grouped according to their average coordination number. The electrical band gap (Delta E) of As2Te3 glass decreases with pressure. The optical and electrical band gaps are related as Delta E-g = 2 Delta E; thus, a negative dT(g)/dP is expected when As2Te3 glass is subjected to high pressures. In this sense, As2Te3 is a unique glass where its variation of T-g with pressure can be understood by both electronic and thermodynamic models.
Resumo:
Despite decades of research, it remains to be established whether the transformation of a liquid into a glass is fundamentally thermodynamic or dynamic in origin. Although observations of growing length scales are consistent with thermodynamic perspectives, the purely dynamic approach of the Dynamical Facilitation (DF) theory lacks experimental support. Further, for vitrification induced by randomly freezing a subset of particles in the liquid phase, simulations support the existence of an underlying thermodynamic phase transition, whereas the DF theory remains unexplored. Here, using video microscopy and holographic optical tweezers, we show that DF in a colloidal glass-forming liquid grows with density as well as the fraction of pinned particles. In addition, we observe that heterogeneous dynamics in the form of string-like cooperative motion emerges naturally within the framework of facilitation. Our findings suggest that a deeper understanding of the glass transition necessitates an amalgamation of existing theoretical approaches.
Resumo:
The effect of hydrogen (H) charging on the shear yield strength (tau(max)) and shear transformation zone volume (Omega) of Ni-Nb-Zr metallic glass ribbons, with varying Zr content, were studied through the first pop-in loads during nanoindentation. Weight gain measurements after H charging and desorption studies were utilized to identify how the total H absorbed during charging is partitioned into mobile and immobile (or trapped) parts. These, in turn, indicate the significant role of H mobility in the amorphous structure on the yielding behavior. In high-Zr alloys, tau(max) increases significantly whereas Omega decreases. In low-Zr alloys, a slight decrease in tau(max) and increase in Omega were noted. These experimental observations are rationalized in terms of the mobility of the absorbed H in the amorphous structure and the possible role of it in the shear transformation zone dynamics during deformation of the metallic glass. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Colloidal systems with competing interactions are known to exhibit a range of dynamically arrested states because of the systems' inability to reach its underlying equilibrium state due to intrinsic frustration. Graphene oxide (GO) aqueous dispersions constitute a class of 2D-anisotropic colloids with competing interactions long-range electrostatic repulsion, originating from ionized groups located on the rim of the sheets, and weak dispersive attractive interactions originating from the unoxidized graphitic domains. We show here that aqueous dispersions of GO exhibit a range of arrested states, encompassing fluid, glass, and gels that coexist with liquid-crystalline order with increasing volume fraction. These states can be accessed by varying the relative magnitudes of the repulsive and attractive forces. This can be realized by changing the ionic strength of the medium. We observe at low salt concentrations, where long-range electrostatic repulsion dominates, the formation of a repulsive Wigner glass, while at high salt concentrations, when attractive forces dominate, the formation of gels exhibits a nematic to columnar liquid-crystalline transition. The present work highlights how the chemical structure of GO hydrophilic ionizable groups and hydrophobic graphitic domains coexisting on a single sheet gives rise to a rich and complex array of arrested states.
Resumo:
The complex perovskite oxide SrRuO3 shows intriguing transport properties at low temperatures due to the interplay of spin, charge, and orbital degrees of freedom. One of the open questions in this system is regarding the origin and nature of the low-temperature glassy state. In this paper we report on measurements of higher-order statistics of resistance fluctuations performed in epitaxial thin films of SrRuO3 to probe this issue. We observe large low-frequency non-Gaussian resistance fluctuations over a certain temperature range. Our observations are compatible with that of a spin-glass system with properties described by hierarchical dynamics rather than with that of a simple ferromagnet with a large coercivity.
Resumo:
Mode I fracture experiments were conducted on brittle bulk metallic glass (BMG) samples and the fracture surface features were analyzed in detail to understand the underlying physical processes. Wollner lines, which result from the interaction between the propagating crack front and shear waves emanating from a secondary source, were observed on the fracture surface and geometric analysis of them indicates that the maximum crack velocity is similar to 800 m s(-1), which corresponds to similar to 0.32 times the shear wave speed. Fractography reveals that the sharp crack nucleation at the notch tip occurs at the mid-section of the specimens with the observation of flat and half-penny-shaped cracks. On this basis, we conclude that the crack initiation in brittle BMGs is stress-controlled and occurs through hydrostatic stress-assisted cavity nucleation ahead of the notch tip. High magnification scanning electron and atomic force microscopies of the dynamic crack growth regions reveal highly organized, nanoscale periodic patterns with a spacing of similar to 79 nm. Juxtaposition of the crack velocity with this spacing suggests that the crack takes similar to 10(-10) s for peak-to-peak propagation. This, and the estimated adiabatic temperature rise ahead of the propagating crack tip that suggests local softening, is utilized to critically discuss possible causes for the nanocorrugation formation. Taylor's fluid meniscus instability is unequivocally ruled out. Then, two other possible mechanisms, viz. (a) crack tip blunting and resharpening through nanovoid nucleation and growth ahead of the crack tip and eventual coalescence, and (b) dynamic oscillation of the crack in a thin slab of softened zone ahead of the crack-tip, are critically discussed. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The temperature (300-973K) and frequency (100Hz-10MHz) response of the dielectric and impedance characteristics of 2BaO-0.5Na(2)O-2.5Nb(2)O(5)-4.5B(2)O(3) glasses and glass nanocrystal composites were studied. The dielectric constant of the glass was found to be almost independent of frequency (100Hz-10MHz) and temperature (300-600K). The temperature coefficient of dielectric constant was 8 +/- 3ppm/K in the 300-600K temperature range. The relaxation and conduction phenomena were rationalized using modulus formalism and universal AC conductivity exponential power law, respectively. The observed relaxation behavior was found to be thermally activated. The complex impedance data were fitted using the least square method. Dispersion of Barium Sodium Niobate (BNN) phase at nanoscale in a glass matrix resulted in the formation of space charge around crystal-glass interface, leading to a high value of effective dielectric constant especially for the samples heat-treated at higher temperatures. The fabricated glass nanocrystal composites exhibited P versus E hysteresis loops at room temperature and the remnant polarization (P-r) increased with the increase in crystallite size.
Resumo:
In our earlier communication we proposed a simple fragility determining function, (NBO]/(VmTg)-T-3), which we have now used to analyze several glass systems using available thermal data. A comparison with similar fragility determining function, Delta C-p/C-p(1), introduced by Chryssikos et al. in their investigation of lithium borate glasses has also been performed and found to be more convenient quantity for discussing fragilities. We now propose a new function which uses both Delta C-p and Delta T and which gives a numerical fragility parameter, F whose value lies between 0 and 1 for glass forming liquids. F can be calculated through the use of measured thermal parameters Delta C-p, C-p(1), T-g and T-m. Use of the new fragility values in reduced viscosity equation reproduces the whole range of viscosity curves of the Angell plot. The reduced viscosity equation can be directly compared with the Adam-Gibbs viscosity equation and a heat capacity function can be formulated which reproduces satisfactorily the Delta C-p versus In(T-r) curves and hence the configurational entropy. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In our earlier communication we proposed a simple fragility determining function, (NBO]/(VmTg)-T-3), which we have now used to analyze several glass systems using available thermal data. A comparison with similar fragility determining function, Delta C-p/C-p(1), introduced by Chryssikos et al. in their investigation of lithium borate glasses has also been performed and found to be more convenient quantity for discussing fragilities. We now propose a new function which uses both Delta C-p and Delta T and which gives a numerical fragility parameter, F whose value lies between 0 and 1 for glass forming liquids. F can be calculated through the use of measured thermal parameters Delta C-p, C-p(1), T-g and T-m. Use of the new fragility values in reduced viscosity equation reproduces the whole range of viscosity curves of the Angell plot. The reduced viscosity equation can be directly compared with the Adam-Gibbs viscosity equation and a heat capacity function can be formulated which reproduces satisfactorily the Delta C-p versus In(T-r) curves and hence the configurational entropy. (C) 2014 Elsevier Ltd. All rights reserved.