178 resultados para FUEL PLATES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct borohydride fuel cells (DBFC) use aqueous alkaline sodium borohydride(NaBH4) as anode fuel to generate electric power with either oxygen or hydrogen peroxide as oxidant. The DBFCs are projected to be very handy for portable power appliances such as laptops and mobile phones in addition to their use in extreme conditions such as underwater and portable military applications. This short review discusses the progress in DBFC research based on electrode materials and membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molybdenum carbide (MoC) and tungsten carbide (WC) are synthesized by direct carbonization method. PtRu catalysts supported on MoC, WC, and Vulcan XC-72R are prepared, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy in conjunction with electrochemistry. Electrochemical activities for the catalysts towards methanol electro-oxidation are studied by cyclic voltammetry. All the electro-catalysts are subjected to accelerated durability test (ADT). The electrochemical activity of carbide-supported electro-catalysts towards methanol electro-oxidation is found to be higher than carbon-supported catalysts before and after ADT. The study suggests that PtRu/MoC and PtRu/WC catalysts are more durable than PtRu/C. Direct methanol fuel cells (DMFCs) with PtRu/MoC and PtRu/WC anodes also exhibit higher performance than the DMFC with PtRu/C anode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the mechanical behaviour of CSM (chopped strand mat)-based GFRC (glass fibre-reinforced composite) plates with single and multiple hemispheres under compressive loads has been investigated both experimentally and numerically. The basic stress-strain behaviours arc identified with quasi-static tests on two-ply coupon laminates and short cylinders, and these are followed up with compressive tests in a UTM (universal testing machine) on single- and multiple-hemisphere plates. The ability of an explicit LS-DYNA solver in predicting the complex material behaviour of composite hemispheres, including failure, is demonstrated. The relevance and scalability of the present class of structural components as `force-multipliers' and `energy-multipliers' have been justified by virtue of findings that as the number of hemispheres in a panel increased from one to four, peak load and average absorbed energy rose by factors of approximately four and six, respectively. The performance of a composite hemisphere has been compared to similar-sized steel and aluminium hemispheres, and the former is found to be of distinctly higher specific energy than the steel specimen. A simulation-based study has also been carried out on a composite 2 x 2-hemisphere panel under impact loads and its behaviour approaching that of an ideal energy absorber has been predicted. In summary, the present investigation has established the efficacy of composite plates with hemispherical force multipliers as potential energy-absorbing countermeasures and the suitability of CAE (computer-aided engineering) for their design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents the studies conducted on turbocharged producer gas engines designed originally for natural gas (NG) as the fuel. Producer gas, whose properties like stoichiometric ratio, calorific value, laminar flame speed, adiabatic flame temperature, and related parameters that differ from those of NG, is used as the fuel. Two engines having similar turbochargers are evaluated for performance. Detailed measurements on the mass flowrates of fuel and air, pressures and temperatures at various locations on the turbocharger were carried out. On both the engines, the pressure ratio across the compressor was measured to be 1.40 +/- 0.05 and the density ratio to be 1.35 +/- 0.05 across the turbocharger with after-cooler. Thermodynamic analysis of the data on both the engines suggests a compressor efficiency of 70 per cent. The specific energy consumption at the peak load is found to be 13.1 MJ/kWh with producer gas as the fuel. Compared with the naturally aspirated mode, the mass flow and the peak load in the turbocharged after-cooled condition increased by 35 per cent and 30 per cent, respectively. The pressure ratios obtained with the use of NG and producer gas are compared with corrected mass flow on the compressor map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Droplet collision occurs frequently in regions where the droplet number density is high. Even for Lean Premixed and Pre-vaporized (LPP) liquid sprays, the collision effects can be very high on the droplet size distributions, which will in turn affect the droplet vaporization process. Hence, in conjunction with vaporization modeling, collision modeling for such spray systems is also essential. The standard O'Rourke's collision model, usually implemented in CFD codes, tends to generate unphysical numerical artifact when simulations are performed on Cartesian grid and the results are not grid independent. Thus, a new collision modeling approach based on no-time-counter method (NTC) proposed by Schmidt and Rutland is implemented to replace O'Rourke's collision algorithm to solve a spray injection problem in a cylindrical coflow premixer. The so called ``four-leaf clover'' numerical artifacts are eliminated by the new collision algorithm and results from a diesel spray show very good grid independence. Next, the dispersion and vaporization processes for liquid fuel sprays are simulated in a coflow premixer. Two liquid fuels under investigation are jet-A and Rapeseed Methyl Esters (RME). Results show very good grid independence in terms of SMD distribution, droplet number distribution and fuel vapor mass flow rate. A baseline test is first established with a spray cone angle of 90 degrees and injection velocity of 3 m/s and jet-A achieves much better vaporization performance than RME due to its higher vapor pressure. To improve the vaporization performance for both fuels, a series of simulations have been done at several different combinations of spray cone angle and injection velocity. At relatively low spray cone angle and injection velocity, the collision effect on the average droplet size and the vaporization performance are very high due to relatively high coalescence rate induced by droplet collisions. Thus, at higher spray cone angle and injection velocity, the results expectedly show improvement in fuel vaporization performance since smaller droplet has a higher vaporization rate. The vaporization performance and the level of homogeneity of fuel-air mixture can be significantly improved when the dispersion level is high, which can be achieved by increasing the spray cone angle and injection velocity. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports the measured spray structure and droplet size distributions of ethanol-gasoline blends for a low-pressure, multi-hole, port fuel injector (PFI). This study presents previously unavailable data for this class of injectors which are widely used in automotive applications. Specifically, gasoline, ethanol, and gasoline-ethanol blends containing 10%, 20% and 50% ethanol were studied using laser backlight imaging, and particle/droplet image analysis (PDIA) techniques. The fuel mass injected, spray structure and tip penetrations, droplet size distributions, and Sauter mean diameter were determined for the blends, at two different injection pressures. Results indicate that the gasoline and ethanol sprays have similar characteristics in terms of spray progression and droplet sizes in spite of the large difference in viscosity. It appears that the complex mode of atomization utilized in these injectors involving interaction of multiple fuel jets is fairly insensitive to the fuel viscosity over a range of values. This result has interesting ramifications for existing gasoline fuel systems which need to handle blends and even pure ethanol, which is one of the renewable fuels of the future. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims at dimensional reduction of non-linear isotropic hyperelastic plates in an asymptotically accurate manner. The problem is both geometrically and materially non-linear. The geometric non-linearity is handled by allowing for finite deformations and generalized warping while the material non-linearity is incorporated through hyperelastic material model. The development, based on the Variational Asymptotic Method (VAM) with moderate strains and very small thickness to shortest wavelength of the deformation along the plate reference surface as small parameters, begins with three-dimensional (3-D) non-linear elasticity and mathematically splits the analysis into a one-dimensional (1-D) through-the-thickness analysis and a two-dimensional (2-D) plate analysis. Major contributions of this paper are derivation of closed-form analytical expressions for warping functions and stiffness coefficients and a set of recovery relations to express approximately the 3-D displacement, strain and stress fields. Consistent with the 2-D non-linear constitutive laws, 2-D plate theory and corresponding finite element program have been developed. Validation of present theory is carried out with a standard test case and the results match well. Distributions of 3-D results are provided for another test case. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel organic-inorganic hybrid membranes have been prepared employing Nafion and acid-functionalized meso-structured molecular sieves (MMS) with varying structures and surface area. Acid-functionalized silica nanopowder of surface area 60 m(2)/g, silica meso-structured cellular foam (MSU-F) of surface area 470 m(2)/g and silica meso-structured hexagonal frame network (MCM-41) of surface area 900 m(2)/g have been employed as potential filler materials to form hybrid membranes with Nafion framework. The structural behavior, water uptake, proton conductivity and methanol permeability of these hybrid membranes have been investigated. DMFCs employing Nafion-silica MSU-F and Nafion-silica MCM-41 hybrid membranes deliver peak-power densities of 127 mW/cm(2) and 100 mW/cm(2), respectively; while a peak-power density of only 48 mW/cm(2) is obtained with the DMFC employing pristine recast Nafion membrane under identical operating conditions. The aforesaid characteristics of the hybrid membranes could be exclusively attributed to the presence of pendant sulfonic acid groups in the filler, which provide fairly continuous proton-conducting pathways between filler and matrix in the hybrid membranes facilitating proton transport without any trade-off between its proton conductivity and methanol crossover. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.036211jes] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by the idea of designing a structure for a desired mode shape, intended towards applications such as resonant sensors, actuators and vibration confinement, we present the inverse mode shape problem for bars, beams and plates in this work. The objective is to determine the cross-sectional profile of these structures, given a mode shape, boundary condition and the mass. The contribution of this article is twofold: (i) A numerical method to solve this problem when a valid mode shape is provided in the finite element framework for both linear and nonlinear versions of the problem. (ii) An analytical result to prove the uniqueness and existence of the solution in the case of bars. This article also highlights a very important question of the validity of a mode shape for any structure of given boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high efficiency of fuel-cell-powered electric vehicles makes them a potentially viable option for future transportation. Polymer Electrolyte Fuel Cells (PEFCs) are most promising among various fuel cells for electric traction due to their quick start-up and low-temperature operation. In recent years, the performance of PEFCs has reached the acceptable level both for automotive and stationary applications and efforts are now being expended in increasing their durability, which remains a major concern in their commercialization. To make PEFCs meet automotive targets an understanding of the factors affecting the stability of carbon support and platinum catalyst is critical. Alloying platinum (Pt) with first-row transition metals such as cobalt (Co) is reported to facilitate both higher degree of crystallinity and enhanced activity in relation to pristine Pt. But a major challenge for the application of Pt-transition metal alloys in PEFCs is to improve the stability of these binary catalysts. Dissolution of the non-precious metal in the acidic environment could alleviate the activity of the catalysts and hence cell performance. The use of graphitic carbon as cathode-catalyst support enhances the long-term stability of Pt and its alloys in relation to non-graphitic carbon as the former exhibits higher resistance to carbon corrosion in relation to the latter in PEFC cathodes during accelerated-stress test (AST). Changes in electrochemical surface area (ESA), cell performance and charge-transfer resistance are monitored during AST through cyclic voltammetry, cell polarization and impedance measurements, respectively. Studies on catalytic electrodes with X-ray diffraction, Raman spectroscopy and transmission electron microscopy reflect that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt and Pt3Co catalyst particles. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.051301jes] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the room temperature cell performance of alkaline direct methanol fuel cells (ADMFCs) with nitrogen-doped carbon nanotubes (NCNTs) as cathode materials. NCNTs show excellent oxygen reduction reaction activity and methanol tolerance in alkaline medium. The open-circuit-voltage (OCV) as well as the power density of ADMFCs first increases and then saturates with NCNT loading. Similarly, the OCV initially increases and reaches saturation with the increase in the concentration of methanol feed stock. Overall, NCNTs exhibit excellent catalytic activity and stability with respect to Pt based cathodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic-inorganic hybrid membranes are prepared from Nafion and acid functionalized aluminosilicate with varying structures and surface areas. Acid-functionalized mesostructured aluminosilicate with cellular foam framework (Al-MSU-F type) of surface area 463 m(2) g(-1), acid-functionalized aluminosilicate molecular sieves (Al-HMS type) of surface area 651 m(2) g(-1) and acid-functionalized mesostructured aluminosilicate with hexagonal network (Al-MCM-41 type) of surface area 799 m(2) g(-1) have been employed as potential filler materials to form hybrid membranes with Nafion. The structural behavior, water uptake, ion-exchange capacity, proton conductivity and methanol permeability of the hybrid membranes are extensively investigated. Direct methanol fuel cells (DMFCs) with Al-HMS-Nafion and Al-MCM-41-Nafion hybrid membranes deliver respective peak power-densities of 170 mW cm(-2) and 246 mW cm(-2), while a peak power-density of only 48 mW cm(-2) is obtained for the DMFC employing pristine recast-Nafion membrane under identical operating conditions. The unique properties associated with hybrid membranes could be exclusively attributed to the presence of pendant sulfonic-acid groups in the filler materials, which provide proton-conducting pathways between the filler and matrix in the hybrid membranes, and facilitate proton transport with adequate balance between proton conductivity and methanol permeability. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper addresses experiments and modeling studies on the use of producer gas, a bio-derived low energy content fuel in a spark-ignited engine. Producer gas, generated in situ, has thermo-physical properties different from those of fossil fuel(s). Experiments on naturally aspirated and turbo-charged engine operation and subsequent analysis of the cylinder pressure traces reveal significant differences in the heat release pattern within the cylinder compared with a typical fossil fuel. The heat release patterns for gasoline and producer gas compare well in the initial 50% but beyond this, producer gas combustion tends to be sluggish leading to an overall increase in the combustion duration. This is rather unexpected considering that producer gas with nearly 20% hydrogen has higher flame speeds than gasoline. The influence of hydrogen on the initial flame kernel development period and the combustion duration and hence on the overall heat release pattern is addressed. The significant deviations in the heat release profiles between conventional fuels and producer gas necessitates the estimation of producer gas-specific Wiebe coefficients. The experimental heat release profiles are used for estimating the Wiebe coefficients. Experimental evidence of lower fuel conversion efficiency based on the chemical and thermal analysis of the engine exhaust gas is used to arrive at the Wiebe coefficients. The efficiency factor a is found to be 2.4 while the shape factor m is estimated at 0.7 for 2% to 90% burn duration. The standard Wiebe coefficients for conventional fuels and fuel-specific coefficients for producer gas are used in a zero D model to predict the performance of a 6-cylinder gas engine under naturally aspirated and turbo-charged conditions. While simulation results with standard Wiebe coefficients result in excessive deviations from the experimental results, excellent match is observed when producer gas-specific coefficients are used. Predictions using the same coefficients on a 3-cylinder gas engine having different geometry and compression ratio(s) indicate close match with the experimental traces highlighting the versatility of the coefficients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composite of mesoporous carbon (MC) with poly(3,4-ethylenedioxythiophene) (PEDOT) is studied as catalyst support for platinum nanoparticles. The durability of commercial Pt/carbon and Pt/MC-PEDOT as cathode catalyst is investigated by invoking air-fuel boundary at the anode side so as to foster carbon corrosion at the cathode side of a polymer electrolyte fuel cell (PEFC). Pt/MC-PEDOT shows higher resistance to carbon corrosion in relation to Pt/C. Electrochemical techniques such as cyclic voltammetry (CV) and impedance measurements are used to evaluate the extent of degradation in the catalyst layer. It is surmised that the resistance of MC-PEDOT as catalyst support toward electrochemical oxidation makes Pt/MC-PEDOT a suitable and stable cathode catalyst for PEFCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work involves a computational study of soot (chosen as a scalar which is a primary pollutant source) formation and transport in a laminar acetylene diffusion flame perturbed by a convecting line vortex. The topology of soot contours resulting from flame vortex interactions has been investigated. More soot was produced when vortex was introduced from the air side in comparison to the fuel side. Also, the soot topography was spatially more diffuse in the case of air side vortex. The computational model was found to be in good agreement with the experimental work previously reported in the literature. The computational simulation enabled a study of various parameters like temperature, equivalence ratio and temperature gradient affecting the soot production and transport. Temperatures were found to be higher in the case of air side vortex in contrast to the fuel side one. In case of fuel side vortex, abundance of fuel in the vortex core resulted in fuel-rich combustion zone in the core and a more discrete soot topography. Besides, the overall soot production was observed to be low in the fuel side vortex. However, for the air side vortex, air abundance in the core resulted in higher temperatures and greater soot production. Probability density functions (PDFs) have been introduced to investigate the spatiotemporal variation of soot yield and transport and their dependence on temperature and acetylene concentration from statistical view point. In addition, the effect of flame curvature on soot production is also studied. The regions convex to fuel stream side witnessed thicker soot layer. All numerical simulations have been carried out on Fluent 6.3.26. (C) 2013 Elsevier Ltd. All rights reserved.