171 resultados para Experimental Analysis
Resumo:
In this study the cooling performance due to air flow and aerodynamics of the Formula Student open wheeled race car has been investigated and optimized with the help of CFD simulations and experimental validation. The race car in context previously suffered from overheating problems. Flow analysis was carried out based on the detailed race car 3D model (NITK Racing 2012 formula student race car). Wind tunnel experiments were carried out on the same. The results obtained from the computer simulations are compared with experimental results obtained from wind tunnel testing of the full car. Through this study it was possible to locate the problem areas and hence choose the best configuration for the cooling duct. The CFD analysis helped in calculating the mass flow rate, pressure and velocity distribution for different velocities of the car which is then used to determine the heat dissipated by the radiator. Area of flow separation could be visualized and made sure smooth airflow into the radiator core area. This significantly increased the cooling performance of the car with reduction in drag.
Resumo:
Advanced bus-clamping pulse width modulation (ABCPWM) techniques are advantageous in terms of line current distortion and inverter switching loss in voltage source inverter-fed applications. However, the PWM waveforms corresponding to these techniques are not amenable to carrier-based generation. The modulation process in ABCPWM methods is analyzed here from a “per-phase” perspective. It is shown that three sets of descendant modulating functions (or modified modulating functions) can be generated from the three-phase sinusoidal signals. Each set of the modified modulating functions can be used to produce the PWM waveform of a given phase in a computationally efficient manner. Theoretical results and experimental investigations on a 5hp motor drive are presented
Resumo:
The paper analyses the results of experiments on the propagation rate in a fuel bed under gasification conditions in a co-current reactor configuration. Experiments using wood chips with different values of moisture content have been conducted under gasification conditions. The influence of air mass flux on the propagation rate, peak temperature and gas quality is investigated. It is observed from the experiments that the flame front propagation rate initially increases as the air mass flux increased, reaching a peak propagation rate, and further increase in the air mass flux results in a decrease in the propagation rate. However, the bed movement increases with the increase in air mass flux. The experimental results provide an understanding on influence of the fuel properties on propagation front. The surface area per unit volume of the particles in the packed bed plays an important role in the propagation rate. It has been argued that the flaming pyrolysis contributes towards the flame propagation as opposed to the overall combustion process in a packed bed. The calorific value of the producer gas generated is nearly the same over the entire range of air mass flux for bone-dry and 10% moist wood. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
An aeroelastic analysis is used to investigate the rate dependent hysteresis in piezoceramic actuators and its effect on helicopter vibration control with trailing edge flaps. Hysteresis in piezoceramic materials can cause considerable complications in the use of smart actuators as prime movers in applications such as helicopter active vibration control. Dynamic hysteresis of the piezoelectric stack actuator is investigated for a range of frequencies (5 Hz (1/rev) to 30 Hz (6/rev)) which are of practical importance for helicopter vibration analysis. Bench top tests are conducted on a commercially available piezoelectric stack actuator. Frequency dependent hysteretic behavior is studied experimentally for helicopter operational frequencies. Material hysteresis in the smart actuator is mathematically modeled using the theory of conic sections. Numerical simulations are also performed at an advance ratio of 0.3 for vibration control analysis using a trailing edge flap with an idealized linear and a hysteretic actuator. The results indicate that dynamic hysteresis has a notable effect on the hub vibration levels. It is found that the theory of conic sections offers a straight forward approach for including hysteresis into aeroelastic analysis.
Resumo:
The flowfields associated with truncated annular plug nozzles of varying lengths are studied both experimentally and using computational tools. The nozzles are designed to observe wake structure transition for the range of pressure ratios considered. A classification of the open wake regime is proposed for comparing and analyzing the plug flowfields. The three-dimensional relief experienced by the annular plug flow leads to greater wave interactions on the plug surface as compared with linear plug flow, resulting in a delayed transition of the base wake. The Reynolds averaged Navier-Stokes based solvers employed in the studies could predict the plug surface flow accurately, whereas they exhibited limitations with regard to plug base flow predictions. Based on the experimental data generated, an empirical model for predicting closed wake base pressure is proposed and compared with other models available in literature.
Resumo:
This paper explains the reason behind pull-in time being more than pull-up time of many Radio Frequency Micro-Electro-Mechanical Systems (RF MEMS) switches at actuation voltages comparable to the pull-in voltage. Analytical expressions for pull-in and pull-up time are also presented. Experimental data as well as finite element simulations of electrostatically actuated beams used in RF-MEMS switches show that the pull-in time is generally more than the pull-up time. Pull-in time being more than pull-up time is somewhat counter-intuitive because there is a much larger electrostatic force during pull-in than the restoring mechanical force during the release. We investigated this issue analytically and numerically using a 1D model for various applied voltages and attribute this to energetics, the rate at which the forces change with time, and softening of the overall effective stiffness of the electromechanical system. 3D finite element analysis is also done to support the 1D model-based analyses.
Resumo:
An experimental charge-density analysis of pyrazinamide (a first line antitubercular drug) was performed using high-resolution X-ray diffraction data (sin theta/lambda)(max) = 1.1 angstrom(-1)] measured at 100 (2) K. The structure was solved by direct methods using SHELXS97 and refined by SHELXL97. The total electron density of the pyrazinamide molecule was modeled using the Hansen-Coppens multipole formalism implemented in the XD software. The topological properties of electron density determined from the experiment were compared with the theoretical results obtained from CRYSTAL09 at the B3LYP/6-31G** level of theory. The crystal structure was stabilized by N-H center dot center dot center dot N and N-H center dot center dot center dot O hydrogen bonds, in which the N3-H3B center dot center dot center dot N1 and N3-H3A center dot center dot center dot O1 interactions form two types of dimers in the crystal. Hirshfeld surface analysis was carried out to analyze the intermolecular interactions. The fingerprint plot reveals that the N center dot center dot center dot H and O center dot center dot center dot H hydrogen-bonding interactions contribute 26.1 and 18.4%, respectively, of the total Hirshfeld surface. The lattice energy of the molecule was calculated using density functional theory (B3LYP) methods with the 6-31G** basis set. The molecular electrostatic potential of the pyrazinamide molecule exhibits extended electronegative regions around O1, N1 and N2. The existence of a negative electrostatic potential (ESP) region just above the upper and lower surfaces of the pyrazine ring confirm the pi-electron cloud.
Resumo:
In this work, a combined forming and fracture limit diagram, fractured void coalescence and texture analysis have been experimentally evaluated for the commercially available aluminum alloy Al 8011 sheet annealed at different temperatures viz. 200 degrees C, 250 degrees C, 300 degrees C and 350 degrees C. The sheets were examined at different annealing temperatures on microstructure, tensile properties, formability and void coalescence. The fractured surfaces of the formed samples were examined using scanning electron microscope (SEM) and these images were correlated with fracture behavior and formability of sheet metals. Formability of Al 8011 was studied and examined at various annealing temperatures using their bulk X-ray crystallographic textures and ODF plots. Forming limit diagrams, void coalescence parameters and crystallographic textures were correlated with normal anisotropy of the sheet metals annealed at different temperatures. (C) 2013 Politechnika Wroclawska. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Resumo:
Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution). The interface experiences a jump discontinuity in metal concentration. The extended finite-element model (XFEM) handles this jump discontinuity by using discontinuous-derivative enrichment formulation, eliminating the requirement of using front conforming mesh and re-meshing after each time step as in the conventional finite-element method. However, prior interface location is required so as to solve the governing equations for concentration field for which a numerical technique, the level set method, is used for tracking the interface explicitly and updating it over time. The level set method is chosen as it is independent of shape and location of the interface. Thus, a combined XFEM and level set method is developed in this paper. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed model is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions. An empirical model for pitting potential is also derived based on the finite-element results. Studies show that pitting profile depends on factors such as ion concentration, solution pH and temperature to a large extent. Studying the individual and combined effects of these factors on pitting potential is worth knowing, as pitting potential directly influences corrosion rate.
Resumo:
This report addresses the assessment of variation in elastic property of soft biological tissues non-invasively using laser speckle contrast measurement. The experimental as well as the numerical (Monte-Carlo simulation) studies are carried out. In this an intense acoustic burst of ultrasound (an acoustic pulse with high power within standard safety limits), instead of continuous wave, is employed to induce large modulation of the tissue materials in the ultrasound insonified region of interest (ROI) and it results to enhance the strength of the ultrasound modulated optical signal in ultrasound modulated optical tomography (UMOT) system. The intensity fluctuation of speckle patterns formed by interference of light scattered (while traversing through tissue medium) is characterized by the motion of scattering sites. The displacement of scattering particles is inversely related to the elastic property of the tissue. We study the feasibility of laser speckle contrast analysis (LSCA) technique to reconstruct a map of the elastic property of a soft tissue-mimicking phantom. We employ source synchronized parallel speckle detection scheme to (experimentally) measure the speckle contrast from the light traversing through ultrasound (US) insonified tissue-mimicking phantom. The measured relative image contrast (the ratio of the difference of the maximum and the minimum values to the maximum value) for intense acoustic burst is 86.44 % in comparison to 67.28 % for continuous wave excitation of ultrasound. We also present 1-D and 2-D image of speckle contrast which is the representative of elastic property distribution.
Resumo:
The present work presents the results of experimental investigation of semi-solid rheocasting of A356 Al alloy using a cooling slope. The experiments have been carried out following Taguchi method of parameter design (orthogonal array of L-9 experiments). Four key process variables (slope angle, pouring temperature, wall temperature, and length of travel of the melt) at three different levels have been considered for the present experimentation. Regression analysis and analysis of variance (ANOVA) has also been performed to develop a mathematical model for degree of sphericity evolution of primary alpha-Al phase and to find the significance and percentage contribution of each process variable towards the final outcome of degree of sphericity, respectively. The best processing condition has been identified for optimum degree of sphericity (0.83) as A(3), B-3, C-2, D-1 i.e., slope angle of 60 degrees, pouring temperature of 650 degrees C, wall temperature 60 degrees C, and 500 mm length of travel of the melt, based on mean response and signal to noise ratio (SNR). ANOVA results shows that the length of travel has maximum impact on degree of sphericity evolution. The predicted sphericity obtained from the developed regression model and the values obtained experimentally are found to be in good agreement with each other. The sphericity values obtained from confirmation experiment, performed at 95% confidence level, ensures that the optimum result is correct and also the confirmation experiment values are within permissible limits. (c) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A mathematical model is developed to simulate the transport and deposition of virus-sized colloids in a cylindrical pore throat considering various processes such as advection, diffusion, colloid-collector surface interactions and hydrodynamic wall effects. The pore space is divided into three different regions, namely, bulk, diffusion and potential regions, based on the dominant processes acting in each of these regions. In the bulk region, colloid transport is governed by advection and diffusion whereas in the diffusion region, colloid mobility due to diffusion is retarded by hydrodynamic wall effects. Colloid-collector interaction forces dominate the transport in the potential region where colloid deposition occurs. The governing equations are non-dimensionalized and solved numerically. A sensitivity analysis indicates that the virus-sized colloid transport and deposition is significantly affected by various pore-scale parameters such as the surface potentials on colloid and collector, ionic strength of the solution, flow velocity, pore size and colloid size. The adsorbed concentration and hence, the favorability of the surface for adsorption increases with: (i) decreasing magnitude and ratio of surface potentials on colloid and collector, (ii) increasing ionic strength and (iii) increasing pore radius. The adsorbed concentration increases with increasing Pe, reaching a maximum value at Pe = 0.1 and then decreases thereafter. Also, the colloid size significantly affects particle deposition with the adsorbed concentration increasing with increasing particle radius, reaching a maximum value at a particle radius of 100 nm and then decreasing with increasing radius. System hydrodynamics is found to have a greater effect on larger particles than on smaller ones. The secondary minimum contribution to particle deposition has been found to increase as the favorability of the surface for adsorption decreases. The sensitivity of the model to a given parameter will be high if the conditions are favorable for adsorption. The results agree qualitatively with the column-scale experimental observations available in the literature. The current model forms the building block in upscaling colloid transport from pore scale to Darcy scale using Pore-Network Modeling. (C) 2014 Elsevier By. All rights reserved.
Resumo:
Composite laminates are prone to delamination. Implementation of delamination in the Carrera Unified Formulation frame work using nine noded quadrilateral MITC9 element is discussed in this article. MITC9 element is devoid of shear locking and membrane locking. Delaminated as well as healthy structure is analyzed for free mode vibration. The results from the present work are compared with the available experimental or/and research article or/and the three dimensional finite element simulations. The effect of different kinds and different percentages of area of delamination on the first three natural frequencies of the structure is discussed. The presence of open-mode delamination mode shape for large delaminations within the first three natural frequencies is discussed. Also, the switching of places between the second bending mode, with that of the first torsional mode frequency is discussed. Results obtained from different ordered theories are compared in the presence of delamination. Advantage of layerwise theories as compared to equivalent single layer theories for very large delaminations is stated. The effect of different kinds of delamination and their effect on the second bending and first torsional mode shape is discussed. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Counter systems are a well-known and powerful modeling notation for specifying infinite-state systems. In this paper we target the problem of checking liveness properties in counter systems. We propose two semi decision techniques towards this, both of which return a formula that encodes the set of reachable states of the system that satisfy a given liveness property. A novel aspect of our techniques is that they use reachability analysis techniques, which are well studied in the literature, as black boxes, and are hence able to compute precise answers on a much wider class of systems than previous approaches for the same problem. Secondly, they compute their results by iterative expansion or contraction, and hence permit an approximate solution to be obtained at any point. We state the formal properties of our techniques, and also provide experimental results using standard benchmarks to show the usefulness of our approaches. Finally, we sketch an extension of our liveness checking approach to check general CTL properties.
Resumo:
This article reports on analysis of fracture processes in reinforced concrete (RC) beams with acoustic emission (AE) technique. An emphasis was given to study the effect of loading rate on variation in AE based b-values with the development of cracks in RC structures. RC beams of length 3.2 m were tested under load control at a rate of 4 kN/s, 5 kN/s and 6 kN/s and the b-value analysis available in seismology was used to study the fracture process in RC structures. Moreover, the b-value is related to the strain in steel to assess the damage state. It is observed that when the loading rate is higher, quick cracking development lead to rapid fluctuations and drops in the b-values. Also it is observed that concrete behaves relatively more brittle at higher loading rates (or at higher strain rates). The average b-values are lower as a few but larger amplitudes of AE events occur in contrast to more number of low amplitude AE events occur at low loading rates (or at low strain rates). (C) 2014 Elsevier Ltd. All rights reserved.