261 resultados para Electrical power
Resumo:
We propose a Low Noise Amplifier (LNA) architecture for power scalable receiver front end (FE) for Zigbee. The motivation for power scalable receiver is to enable minimum power operation while meeting the run-time performance needed. We use simple models to find empirical relations between the available signal and interference levels to come up with required Noise Figure (NF) and 3rd order Intermodulation Product (IIP3) numbers. The architecture has two independent digital knobs to control the NF and IIP3. Acceptable input match while using adaptation has been achieved by using an Active Inductor configuration for the source degeneration inductor of the LNA. The low IF receiver front end (LNA with I and Q mixers) was fabricated in 130nm RFCMOS process and tested.
Resumo:
Energy Harvesting (EH) nodes, which harvest energy from the environment in order to communicate over a wireless link, promise perpetual operation of a wireless network with battery-powered nodes. In this paper, we address the throughput optimization problem for a rate-adaptive EH node that chooses its rate from a set of discrete rates and adjusts its power depending on its channel gain and battery state. First, we show that the optimal throughput of an EH node is upper bounded by the throughput achievable by a node that is subject only to an average power constraint. We then propose a simple transmission scheme for an EH node that achieves an average throughput close to the upper bound. The scheme's parameters can be made to account for energy overheads such as battery non-idealities and the energy required for sensing and processing. The effect of these overheads on the average throughput is also analytically characterized.
Resumo:
The technological world has attained a new dimension with the advent of miniaturization and a major breakthrough has evolved in the form of moems, technically more advanced than mems. This breakthrough has paved way for the scientists to research and conceive their innovation. This paper presents a mathematical analysis of the wave propagation along the non-uniform waveguide with refractive index varying along the z axis implemented on the cantilever beam of MZI based moem accelerometer. Secondly the studies on the wave bends with minimum power loss focusing on two main aspects of bend angle and curvature angle is also presented.
Resumo:
High voltage power supplies for radar applications are investigated, which are subjected to pulsed load (125 kHz and 10% duty cycle) with stringent specifications (<0.01% regulation, efficiency>85%, droop<0.5 V/micro-sec.). As good regulation and stable operation requires the converter to be switched at much higher frequency than the pulse load frequency, transformer poses serious problems of insulation failure and higher losses. This paper proposes a methodology to tackle the problems associated with this type of application. Synchronization of converter switching with load pulses enables the converter to switch at half the load switching frequency. Low switching frequency helps in ensuring safety of HV transformer insulation and reduction of losses due to skin and proximity effect. Phase-modulated series resonant converter with ZVS is used as the power converter.
Resumo:
High voltage power supplies for radar applications are investigated which are subjected to pulsed load with stringent specifications. In the proposed solution, power conversion is done in two stages. A low power-high frequency converter modulates the input voltage of a high power-low frequency converter. This method satisfies all the performance specifications and takes care of the critical aspects of HV transformer.
Resumo:
Stoichiometric CrSi2 was prepared by arc melting and compacted by uniaxial hot pressing for property measurements. The crystal structure of CrSi2 was investigated using the powder x-ray diffraction method. From the Rietveld refinement, the lattice parameters were found to be a = 4.427 57 (7) and c = 6.368 04 (11) Å, respectively. The thermal expansion measurement revealed an anisotropic expansion in the temperature range from room temperature 800 K with αa = 14.58×10−6/K, αc = 7.51×10−6/K, and αV = 12.05×10−6/K. The volumetric thermal expansion coefficient shows an anomalous decrease in the temperature range of 450–600 K. The measured electrical resistivity ρ and thermoelectric power S have similar trends with a maxima around 550 K. Thermal conductivity measurements show a monotonic decrease with increasing temperature from a room temperature value of 10 W m−1 K−1. The ZT values increase with temperature and have a maximum value of 0.18 in the temperature range studied. An analysis of the electronic band structure is provided.
Resumo:
The paper deals with the calculation of the induced voltage on, and the equivalent capacitance of, an earth wire isolated for purposes of tapping small amounts of power from high-voltage lines. The influence of heights, diameters and spacings of conductors on these quantities have been studied and presented in the form of graphs.
Resumo:
The basic concepts of tuned half-wave lines were covered by Hubert and Gent [1]. In this paper the problem of overvoltages during faults and the stability of the system incorporating such tuned lines are discussed. The type of tuning bank and the line arrangements that will be satisfactory from the point of view of stability are suggested. The behavior of a line tuned by distributed capacitor is analyzed, and its performance is compared with the other type of tuned line.
Resumo:
The paper presents an analysis of ferro-oscillations in capacitor voltage transformers and series-compensated e.h.v. lines. The dual-input describing function is adopted to show the regions of existence and the influence of system parameters on such oscillations. A complete analytical method suitable for digital computation has been developed for determining the amplitudes of these oscillations.
Resumo:
This paper provides additional theoretical information on half-wave-length power transmission. The analysis is rendered more general by consideration of a natural half-wave line instead of a short line tuned to half-wave. The effects of line loading and its power factor on the voltage and current profiles of the line and ganerator excitation have been included. Some of the operating problems such as charging of the line and synchronization of the half-wave system are also discussed. The inevitability of power-frequency overvoltages during faults is established. Stability studies have indicated that the use of switching stations is not beneficial. Typical swing curves are also presented.
Resumo:
Computational studies of the transient stability of a synchronous machine connected to an infinite busbar by a double-circuit transmission line are used to illustrate the effect of relative phase-shift insertion between the machine and its associated power system. This method of obtaining a change in the effective rotor-excitation angle, and thereby the power transfer, is described, together with an outline of possible methods of implementation by a phase-shifting transformer in a power system.
Resumo:
Gate driver is an integral part of every power converter, drives the power semiconductor devices and also provides protection for the switches against short-circuit events and over-voltages during shut down. Gate drive card for IGBTs and MOSFETs with basic features can be designed easily by making use of discrete electronic components. Gate driver ICs provides attractive features in a single package, which improves reliability and reduces effort of design engineers. Either case needs one or more isolated power supplies to drive each power semiconductor devices and provide isolation to the control circuitry from the power circuit. The primary emphasis is then to provide simplified and compact isolated power supplies to the gate drive card with the requisite isolation strength and which consumes less space, and for providing thermal protection to the power semiconductor modules for 3-� 3 wire or 4 wire inverters.
Resumo:
Abstract | Electrical switching which has applications in areas such as information storage, power control, etc is a scientifically interesting and technologically important phenomenon exhibited by glassy chalcogenide semiconductors. The phase change memories based on electrical switching appear to be the most promising next generation non-volatile memories, due to many attributes which include high endurance in write/read operations, shorter write/read time, high scalability, multi-bit capability, lower cost and a compatibility with complementary metal oxide semiconductor technology.Studies on the electrical switching behavior of chalcogenide glasses help us in identifying newer glasses which could be used for phase change memory applications. In particular, studies on the composition dependence of electrical switching parameters and investigations on the correlation between switching behavior with other material properties are necessary for the selection of proper compositions which make good memory materials.In this review, an attempt has been made to summarize the dependence of the electrical switching behavior of chalcogenide glasses with other material properties such as network topological effects, glass transition & crystallization temperature, activation energy for crystallization, thermal diffusivity, electrical resistivity and others.
Resumo:
This paper describes an application of a FACTS supplementary controller for damping of inter area oscillations in power systems. A fuzzy logic controller is designed to regulate a thyristor controlled series capacitor (TCSC) in a multimachine environment to produce additional damping in the system. Simultaneous application of the excitation controller and proposed controller is also investigated. Simulation studies have been done with different types of disturbances and the results are shown to be consistent with the expected performance of the supplementary controller.
Resumo:
High voltage power supplies for radar applications are investigated, which are subjected to pulsed load (125 kHz and 10% duty cycle) with stringent specifications (<0.01% regulation, efficiency>85%, droop<0.5 V/micro-sec.). As good regulation and stable operation requires the converter to be switched at much higher frequency than the pulse load frequency, transformer poses serious problems of insulation failure and higher losses. Few converter topologies are proposed to tackle these problems. A study is made regarding the beat frequency oscillations that may exist with pulsed loading. It is illustrated with respect to the proposed converter topologies. Methods are proposed to eliminate or minimize these oscillations.