231 resultados para Electric conductivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly (110) preferred orientated antiferroelectric PbZrO3 (PZ) and La-modified PZ thin films have been fabricated on Pt/Ti/SiO2/Si substrates using sol-gel process. Dielectric properties, electric field induced ferroelectric polarization, and the temperature dependence of the dielectric response have been explored as a function of composition. The Tc has been observed to decrease by ∼ 17 °C per 1 mol % of La doping. Double hysteresis loops were seen with zero remnant polarization and with coercive fields in between 176 and 193 kV/cm at 80 °C for antiferroelectric to ferroelectric phase transformation. These slim loops have been explained by the high orientation of the films along the polar direction of the antiparallel dipoles of a tetragonal primitive cell and by the strong electrostatic interaction between La ions and oxygen ions in an ABO3 perovskite unit cell. High quality films exhibited very low loss factor less than 0.015 at room temperature and pure PZ; 1 and 2 mol % La doped PZs have shown the room temperature dielectric constant of 135, 219, and 142 at the frequency of 10 kHz. The passive layer effects in these films have been explained by Curie constants and Curie temperatures. The ac conductivity and the corresponding Arrhenius plots have been shown and explained in terms of doping effect and electrode resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid solidification of Ag‐53 at. % Se alloy resulted in the formation of a composite mixture of Ag2.5Se and Se. The microstructure consists of spherical Se grains of 2–20 μm size, randomly distributed in a matrix of Ag2.5 Se. The Se grains were found to be layered hexagonal while the Ag2.5 Se had an orthorhombic crystal structure. The unit cell size of this phase, however, was twice that reported for the equilibrium orthorhombic Ag2 Se compound. The conductivity σ variation with temperature in the range 80–320 K was found to be similar to that observed in degenerate semiconductors. The σ decreased from 295 Ω−1 cm−1 at room temperature to a saturation value of 70 Ω−1 cm−1 for temperatures <80 K. The results are discussed in terms of percolation conduction in the Ag2.5 Se phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A system of transport equations have been obtained for plasma of electrons and having a background of positive ions in the presence of an electric and magnetic field. The starting kinetic equation is the well-known Landau kinetic equation. The distribution function of the kinetic equation has been expanded in powers of generalized Hermite polynomials and following Grad, a consistent set of transport equations have been obtained. The expressions for viscosity and heat conductivity have been deduced from the transport equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prebreakdown currents in a coaxial cylindrical geometry in nitrogen have been measured with and without a crossed magnetic field. The range of parameters used in the investigation are 2.6 ÿ p ÿ 14.5 torr, 50 ÿ (E/p) ÿ 420 V cm-1 torr-1, and 43.0 ÿ H/p ÿ 1185 Oe torr-1 (p is the pressure, E is the electric field, and H is the magnetic field). The initial photoelectric current is obtained by allowing photons produced in an auxiliary glow discharge to strike the cathode. Ions and electrons produced in the auxiliary discharge are prevented from reaching the main gap by suitable shielding. By modifying the Rice equation for back diffusion, the measured ionization current multiplication without a crossed magnetic field is compared with the multiplication predicted by the Townsend growth equation for nonuniform electric fields. It is observed that over the range of 50 Ã�¿ (E/P)max Ã�¿ 250 [(E/P)max is the value of E/p at the central electrode of the coaxial system] measured and calculated multiplication of current agree with each other. With a crossed magnetic field the prebreakdown currents have been measured and compared with the theoretically calculated currents using the equivalent pressure concept. Agreement between the calculated and measured currents is not satisfactory, and this has been attributed more to the uncertainty in the collision frequency data available than nonuniformity of the electric field. Sparking potentials have been measured with and without a crossed magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sparking potentials have been measured in nitrogen and dry air between coaxial cylindrical electrodes for values of n = R2/R1 = approximately 1 to 30 (R1 = inner electrode radius, R2 = outer electrode radius) in the presence of crossed uniform magnetic fields. The magnetic flux density was varied from 0 to 3000 Gauss. It has been shown that the minimum sparking potentials in the presence of the crossed magnetic field can be evaluated on the basis of the equivalent pressure concept when the secondary ionization coefficient does not vary appreciably with B/p (B = magnetic flux density, p = gas pressure). The values of secondary ionization coefficients �¿B in nitrogen in crossed fields calculated from measured values of sparking potentials and Townsend ionization coefficients taken from the literature, have been reported. The calculated values of collision frequencies in nitrogen from minimum sparking potentials in crossed fields are found to increase with increasing B/p at constant E/pe (pe = equivalent pressure). Studies on the similarity relationship in crossed fields has shown that the similarity theorem is obeyed in dry air for both polarities of the central electrode in crossed fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As aircraft technology is moving towards more electric architecture, use of electric motors in aircraft is increasing. Axial flux BLDC motors (brushless DC motors) are becoming popular in aero application because of their ability to meet the demand of light weight, high power density, high efficiency and high reliability. Axial flux BLDC motors, in general, and ironless axial flux BLDC motors, in particular, come with very low inductance Owing to this, they need special care to limit the magnitude of ripple current in motor winding. In most of the new more electric aircraft applications, BLDC motor needs to be driven from 300 or 600 Vdc bus. In such cases, particularly for operation from 600 Vdc bus, insulated-gate bipolar transistor (IGBT)-based inverters are used for BLDC motor drive. IGBT-based inverters have limitation on increasing the switching frequency, and hence they are not very suitable for driving BLDC motors with low winding inductance. In this study, a three-level neutral point clamped (NPC) inverter is proposed to drive axial flux BLDC motors. Operation of a BLDC motor driven from three-level NPC inverter is explained and experimental results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydraulic conductivity of fine-grained soils has assumed greater importance in waste disposal facilities. It is necessary to understand better the factors controlling hydraulic conductivity of fine-grained soils which are used as liners in waste disposal facilities. Hydraulic Conductivity study with ten soils with two fluids having extreme dielectric constants(epsilon) namely water and CCl4 has shown that intrinsic permeability (K) increases drastically with decrease in epsilon. These changes are attributed to the significant reduction in the thickness of diffuse double layer which in turn mainly dependent on the epsilon of the permeant. Hydraulic Conductivity with water of each pair of soils having nearly same liquid limit but different plasticity properties is found to be vastly different, but found to correlate well with shrinkage index, defined as difference between the liquid and the shrinkage limits. Also the ratio Kccl(4)/K-w is found to significantly increase with the increase in the shrinkage index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a study on effect of different energization on removal of NOX in diesel engine exhaust has been presented. Here we made a detailed qualitative study of effect of pulsed/ac/dc voltage energizations on the NOX treatment of using conventional wire-cylinder reactor configuration. It was observed that amongst different energizations, pulse energization exhibits maximum NOX removal efficiency when compared to ac and dc energizations. For a given specific energy density, wire-cylinder reactor filled with BaTiO3 pellet gives higher NOX removal efficiency when compared to reactor without pellets under both pulse and ac energization. The dc energization does not have much impact on the removal processes. The paper further discusses the individual energization cases in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the thermal efficiency of the operation of arc furnace and the effects of harmonics and voltage dips of a factory located near Bangkok. It also attempts to find ways to improve the performance of the arc furnace operation and minimize the effects of both harmonics and voltage dips. A dynamic model of the arc furnace has been developed incorporating both electrical and thermal characteristics. The model can be used to identify potential areas for improvement of the furnace and its operation. Snapshots of waveforms and measurement of RMS values of voltage, current and power at the furnace, at other feeders and at the point of common coupling were recorded. Harmonic simulation program and electromagnetic transient simulation program were used in the study to model the effects of harmonics and voltage dips and to identify appropriate static and dynamic filters to minimize their effects within the factory. The effects of harmonics and voltage dips were identified in records taken at the point of common coupling of another factory supplied by another feeder of the same substation. Simulation studies were made to examine the results on the second feeder when dynamic filters were used in the factory which operated the arc furnace. The methodology used and the mitigation strategy identified in the study are applicable to general situation in a power distribution system where an arc furnace is a part of the load of a customer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the end of second world war, extra high voltage ac transmission has seen its development. The distances between generating and load centres as well as the amount of power to be handled increased tremendously for last 50 years. The highest commercial voltage has increased to 765 kV in India and 1,200 kV in many other countries. The bulk power transmission has been mostly performed by overhead transmission lines. The dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower is performed by string insulators. Whether in clean condition or under polluted conditions, the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. Hence the present investigation aims to study accurately, the field distribution for various types of porcelain/ceramic insulators (Normal and Antifog discs) used for high-voltage transmission. The surface charge simulation method is employed for the field computation. A comparison on normalised surface resistance, which is an indicator for the stress concentration under polluted condition, is also attempted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical conductivity and Seebeck coefficient of calcium-doped YFeO3, a potential cathode material in solid oxide fuel cells (SOFC), are measured as function of temperature and composition in air to resolve conflicts in the literature both on the nature of conduction (n- or p-type) and the types of defects (majority and the minority) present. Compositions of Y1-xCaxFeO3-delta with x = 0.0, 0.025, 0.05 and 0.1 are studied in the temperature range from 625 to 1250 K. All Y1-xCaxFeO3-delta samples show p-type semiconducting behaviour. Addition of Ca up to 5% dramatically increases the conductivity of YFeO3; increase is more gradual up to 10%. A second phase Ca2Fe2O5 appears in the microstructure for Ca concentrations in excess of 11%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes dispersed in polymer matrix have been aligned in the form of fibers and interconnects and cured electrically and by UV light. Conductivity and effective semiconductor tunneling against reverse to forward bias field have been designed to have differentiable current-voltage response of each of the fiber/channel. The current-voltage response is a function of the strain applied to the fibers along axial direction. Biaxial and shear strains are correlated by differentiating signals from the aligned fibers/channels. Using a small doping of magnetic nanoparticles in these composite fibers, magneto-resistance properties are realized which are strong enough to use the resulting magnetostriction as a state variable for signal processing and computing. Various basic analog signal processing tasks such as addition, convolution and filtering etc. can be performed. These preliminary study shows promising application of the concept in combined analog-digital computation in carbon nanotube based fibers. Various dynamic effects such as relaxation, electric field dependent nonlinearities and hysteresis on the output signals are studied using experimental data and analytical model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here a multiple-nitrile based lithium-salt liquid electrolyte. The ionic conductivity of poly (propyl ether imine) (abbreviated as PETIM) lithium salt dendrimer liquid electrolyte was observed to be a function of dendrimer generation number, n=0 (monomer)-3. While the highest room temperature ionic conductivity value (similar to 10(-1) Sm-1) was recorded for the bis-2cyanoethyl ether monomer (i.e. zeroth generation; G(0)-CN), conductivity decreased progressively to lower values (similar to 10(-3) Sm-1) with increase in generation number (G(1)-CN -> G(3)-CN). The G(0)-CN and higher dendrimer generations showed high thermal stability (approximate to 150 to 200 degrees C), low moisture sensitivity and tunable viscosity (similar to 10(-2) (G(0)-CN) to 3 (G(3)-CN) Pa s). The linker ether group was found to be crucial for ion transport and also eliminated a large number of detrimental features, chiefly moisture sensitivity, chemical instability associated typically with prevalent molecular liquid solvents. Based on the combination of several beneficial physicochemical properties, we presently envisage that the PETIM dendrimers especially the G(0)-CN electrolytes hold promise as electrolytes in electrochemical devices such as lithium-ion batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we estimate the solution of the electromigration diffusion equation (EMDE) in isotopically pure and impure metallic single-walled carbon nanotubes (CNTs) (SWCNTs) by considering self-heating. The EMDE for SWCNT has been solved not only by invoking the dependence of the electromigration flux on the usual applied static electric field across its two ends but also by considering a temperature-dependent thermal conductivity (κ) which results in a variable temperature distribution (T) along its length due to self-heating. By changing its length and isotopic impurity, we demonstrate that there occurs a significant deviation in the SWCNT electromigration performance. However, if κ is assumed to be temperature independent, the solution may lead to serious errors in performance estimation. We further exhibit a tradeoff between length and impurity effect on the performance toward electromigration. It is suggested that, to reduce the vacancy concentration in longer interconnects of few micrometers, one should opt for an isotopically impure SWCNT at the cost of lower κ, whereas for comparatively short interconnects, pure SWCNT should be used. This tradeoff presented here can be treated as a way for obtaining a fairly well estimation of the vacancy concentration and mean time to failure in the bundles of CNT-based interconnects. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper exhibits high thermal conductivity properties and hence it is extensively used in cryogenic applications like cold fingers, heat exchangers, etc. During the realization of such components, copper undergoes various machining operations from the raw material stage to the final component. During these machining processes, stresses are induced within the metal resulting in internal stresses, strains and dislocations. These effects build up resistance paths for the heat carriers which transfer heat from one location to the other. This in turn, results in reduction of thermal conductivity of the conducting metal and as a result the developed component will not perform as per expectations. In the process of cryogenic treatment, the metal samples are exposed to cryogenic temperature for extended duration of time for 24 hours and later tempered. During this process, the internal stresses and strains are reduced with refinement of the atomic structure. These effects are expected to favourably improve thermal conductivity properties of the metal. In this experimental work, OFHC copper samples were cryotreated for 24 hours at 98 K and part of them were tempered at 423K for one hour. Significant enhancement of thermal conductivity values were observed after cryotreating and tempering the copper samples.