212 resultados para Double Strap Joint


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-potential-based compact charge models for symmetric double-gate metal-oxide-semiconductor field-effect transistors (SDG-MOSFETs) are based on the fundamental assumption of having equal oxide thicknesses for both gates. However, for practical devices, there will always be some amount of asymmetry between the gate oxide thicknesses due to process variations and uncertainties, which can affect device performance significantly. In this paper, we propose a simple surface-potential-based charge model, which is applicable for tied double-gate MOSFETs having same gate work function but could have any difference in gate oxide thickness. The proposed model utilizes the unique so-far-unexplored quasi-linear relationship between the surface potentials along the channel. In this model, the terminal charges could be computed by basic arithmetic operations from the surface potentials and applied biases, and thus, it could be implemented in any circuit simulator very easily and extendable to short-channel devices. We also propose a simple physics-based perturbation technique by which the surface potentials of an asymmetric device could be obtained just by solving the input voltage equation of SDG devices for small asymmetry cases. The proposed model, which shows excellent agreement with numerical and TCAD simulations, is implemented in a professional circuit simulator through the Verilog-A interface and demonstrated for a 101-stage ring oscillator simulation. It is also shown that the proposed model preserves the source/drain symmetry, which is essential for RF circuit design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMR spectroscopic separation of double bonded cis- and trans-isomers, that have different molecular shapes but identical mass have been carried out using Diffusion Ordered Spectroscopy (DOSY). The mixtures of fumaric acid and maleic acid, that have similar hydrodynamic radii, have resolved been on the basis of their diffusion coefficients arising due to their different tendencies to associate with micelles or reverse micelles. Sodium dodecyl sulfate (SDS) and Dioctyl sulfosuccinate sodium salt (AOT) have been used as the media to mimic the chromatographic conditions, modify the average mobility and to achieve differential diffusion rates. The best separation of the components has been achieved by Dioctyl sulfosuccinate sodium salt (AOT) in D2O solution. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since it is difficult to find the analytical solution of the governing Poisson equation for double gate MOSFETs with the body doping term included, the majority of the compact models are developed for undoped-body devices for which the analytical solution is available. Proposed is a simple technique to included a body doping term in such surface potential based common double gate MOSFET models also by taking into account any differences between the gate oxide thickness. The proposed technique is validated against TCAD simulation and found to be accurate as long as the channel is fully depleted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the threshold voltage modeling of ultra-thin (1 nm-5 nm) silicon body double-gate (DG) MOSFETs using self-consistent Poisson-Schrodinger solver (SCHRED). We define the threshold voltage (V th) of symmetric DG MOSFETs as the gate voltage at which the center potential (Φ c) saturates to Φ c (s a t), and analyze the effects of oxide thickness (t ox) and substrate doping (N A) variations on V th. The validity of this definition is demonstrated by comparing the results with the charge transition (from weak to strong inversion) based model using SCHRED simulations. In addition, it is also shown that the proposed V t h definition, electrically corresponds to a condition where the inversion layer capacitance (C i n v) is equal to the oxide capacitance (C o x) across a wide-range of substrate doping densities. A capacitance based analytical model based on the criteria C i n v C o x is proposed to compute Φ c (s a t), while accounting for band-gap widening. This is validated through comparisons with the Poisson-Schrodinger solution. Further, we show that at the threshold voltage condition, the electron distribution (n(x)) along the depth (x) of the silicon film makes a transition from a strong single peak at the center of the silicon film to the onset of a symmetric double-peak away from the center of the silicon film. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The host-guest chemistry of most inorganic layered solids is limited to ion-exchange reactions. The guest species are either cations or anions to compensate for the charge deficit, either positive or negative, of the inorganic layers. Here, we outline a strategy to include neutral molecules like ortho- and para-chloranil, that are known to be good acceptors in donor-acceptor or charge-transfer complexes, within the galleries of a layered solid. We have succeeded in including neutral ortho- and para-chloranil molecules within the galleries of an Mg-Al layered double hydroxide (LDH) by using charge-transfer interactions with preintercalated p-aminobenzoate ions as the driving force. The p-aminobenzoate ions are introduced in the Mg-Al LDH via ion exchange. The intercalated LDH can adsorb ortho- and para-chloranil from chloroform solutions by forming charge-transfer complexes with the p-aminobenzoate anions present in the galleries. We use X-ray diffraction, spectroscopy, and molecular dynamics simulations to establish the nature of interactions and arrangement of the charge-transfer complex within the galleries of the layered double hydroxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we employ message passing algorithms over graphical models to jointly detect and decode symbols transmitted over large multiple-input multiple-output (MIMO) channels with low density parity check (LDPC) coded bits. We adopt a factor graph based technique to integrate the detection and decoding operations. A Gaussian approximation of spatial interference is used for detection. This serves as a low complexity joint detection/decoding approach for large dimensional MIMO systems coded with LDPC codes of large block lengths. This joint processing achieves significantly better performance than the individual detection and decoding scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA Ligase IV is responsible for sealing of double-strand breaks (DSBs) during nonhomologous end-joining (NHEJ). Inhibiting Ligase IV could result in amassing of DSBs, thereby serving as a strategy toward treatment of cancer. Here, we identify a molecule, SCR7 that inhibits joining of DSBs in cell-free repair system. SCR7 blocks Ligase IV-mediated joining by interfering with its DNA binding but not that of T4 DNA Ligase or Ligase I. SCR7 inhibits NHEJ in a Ligase IV-dependent manner within cells, and activates the intrinsic apoptotic pathway. More importantly, SCR7 impedes tumor progression in mouse models and when coadministered with DSB-inducing therapeutic modalities enhances their sensitivity significantly. This inhibitor to target NHEJ offers a strategy toward the treatment of cancer and improvement of existing regimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a detailed pulse-phase-resolved spectral analysis of the persistent high-mass X-ray binary pulsar Vela X-1 observed with Suzaku during 2008 June. The pulse profiles exhibit both intensity and energy dependence with multiple peaks at low energies and double peaks at higher energies. The source shows some spectral evolution over the duration of the observation and care has been taken to average over data with minimum spectral variability for the analysis. We model the continuum with a phenomenological partial covering high-energy cutoff model and a more physical partial covering thermal Comptonization model (CompTT) excluding the time ranges having variable hardness ratio and intensity dependence. For both the models, we detect a cyclotron resonant scattering feature (CRSF) and its harmonic at similar to 25 keV and similar to 50 keV. Both the CRSF fundamental and harmonics parameters are strongly variable over the pulse phase, with the ratio of the two line energies deviating from the classical value of 2. The continuum parameters also show significant variation over the pulse phase and give us some idea about the changing physical conditions that are seen with the changing viewing angle at different pulse phases and obscuration by the accretion stream at some pulse phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (4), unstable fracture toughness (K-Ic(c)), unstable fracture toughness (K-Ic(un)) and initiation fracture toughness (K-Ic(ini)) have been evaluated based on linear elastic fracture mechanics and nonlinear fracture mechanics principles. Double-G and double-K method uses the secant compliance at the peak point of measured P-CMOD curves for determining the effective crack length. Bi-linear tension softening model has been employed to account for cohesive stresses ahead of the crack tip. From the studies, it is observed that the fracture parameters obtained by using double - G and double - K models are in good agreement with each other. Crack extension resistance has been estimated by using the fracture parameters obtained through double - K model. It is observed that the values of the crack extension resistance at the critical unstable point are almost equal to the values of the unstable fracture toughness K-Ic(un) of the materials. The computed fracture parameters will be useful for crack growth study, remaining life and residual strength evaluation of concrete structural components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper identified and characterized a special multi-degree of freedom toggle behavior, called double toggle, observed in a typical MCCB switching mechanism. For an idealized system, the condition of toggle sequence is derived geometrically. The existing tools available in a multi-body dynamics package are used for exploring the dynamic behavior of such systems parametrically. The double toggle mechanism is found to make the system insensitive to the operator's behavior; however, the system is vulnerable under extreme usage. The linkage kinematics and stopper locations are found to have dominant role on the behavior of the system. It is revealed that the operating time is immune to the inertial property of the input link and sensitive to that of the output link. Novel designs exploiting this observation, in terms of spring and toggle placements, to enhance switching performance have also been reported in the paper. Detailed study revealed that strategic placement of the spring helps in selective alteration of system performance. Thus, the study establishes the critical importance of the kinematic design of MCCB over the dynamic parameters. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an algorithm for joint data detection and tracking of the dominant singular mode of a time varying channel at the transmitter and receiver of a time division duplex multiple input multiple output beamforming system. The method proposed is a modified expectation maximization algorithm which utilizes an initial estimate to track the dominant modes of the channel at the transmitter and the receiver blindly; and simultaneously detects the un known data. Furthermore, the estimates are constrained to be within a confidence interval of the previous estimate in order to improve the tracking performance and mitigate the effect of error propagation. Monte-Carlo simulation results of the symbol error rate and the mean square inner product between the estimated and the true singular vector are plotted to show the performance benefits offered by the proposed method compared to existing techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a unified framework using the unit cube for measurement, representation and usage of the range of motion (ROM) of body joints with multiple degrees of freedom (d.o.f) to be used for digital human models (DHM). Traditional goniometry needs skill and kn owledge; it is intrusive and has limited applicability for multi-d.o.f. joints. Measurements using motion capture systems often involve complicated mathematics which itself need validation. In this paper we use change of orientation as the measure of rotation; this definition does not require the identification of any fixed axis of rotation. A two-d.o.f. joint ROM can be represented as a Gaussian map. Spherical polygon representation of ROM, though popular, remains inaccurate, vulnerable due to singularities on parametric sphere and difficult to use for point classification. The unit cube representation overcomes these difficulties. In the work presented here, electromagnetic trackers have been effectively used for measuring the relative orientation of a body segment of interest with respect to another body segment. The orientation is then mapped on a surface gridded cube. As the body segment is moved, the grid cells visited are identified and visualized. Using the visual display as a feedback, the subject is instructed to cover as many grid cells as he can. In this way we get a connected patch of contiguous grid cells. The boundary of this patch represents the active ROM of the concerned joint. The tracker data is converted into the motion of a direction aligned with the axis of the segment and a rotation about this axis later on. The direction identifies the grid cells on the cube and rotation about the axis is represented as a range and visualized using color codes. Thus the present methodology provides a simple, intuitive and accura te determination and representation of up to 3 d.o.f. joints. Basic results are presented for the shoulder. The measurement scheme to be used for wrist and neck, and approach for estimation of the statistical distribution of ROM for a given population are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new set of input voltage equations (IVEs) for independent double-gate MOSFET by solving the governing bipolar Poisson equation (PE) rigorously. The proposed IVEs, which involve the Legendre's incomplete elliptic integral of the first kind and Jacobian elliptic functions and are valid from accumulation to inversion regimes, are shown to have good agreement with the numerical solution of the same PE for all bias conditions.